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Abstract 
 

Malware is a constantly evolving and rising threat, especially ransomware, a form of 

malware. The rise of ransomware as a service platform adds to this surge, and malware 

researchers need options to swiftly and reliably identify a family of ransomware to protect the 

data of individuals and vital infrastructures. 

 

In this study we provide an image-based detection and classification method that can aid 

researchers in identifying the origins of ransomware by comparing it to known ransomware 

families. We aimed to reach a high level of accuracy and a low false positive rate on a given 

ransomware sample using a limited-size training dataset and COTS hardware. 

 

We used a dataset of 347,307 Windows executable malware samples obtained from 

VirusTotal (VT). These samples were collected by VT between 2017 and 2020. From this 

dataset we selected samples positively identified as known ransomware.  

  

We applied a novel AI-driven approach to classify ransomware based on an image 

representation of the binary file. This approach has been used by security practitioners and 

academics on malware in general but not on particular types of malware like ransomware. 

 

We used a naïve approach to selecting the best-performing convolutional neural networks 

based on 16 of the available applications in Keras, a Python API for the TensorFlow 

opensource machine learning platform. These applications were pre-trained on the ImageNet 

dataset of natural images. 

 

The proposed method achieves above 90% accuracy and a high recall rate for a high 

probability of detection of ransomware based on three channel (RGB) images. The best-

scoring models on our dataset were MobileNet and MobileNetV2. 

 

Keywords: Ransomware, Computer vision, Deep learning, CNN, Machine learning   
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1 Introduction 
 

This chapter introduces the background to the study, defines the problem, and articulates the 

research questions. 

 

1.1 Background of the study 
Ransomware is a form of malware (Hassan, 2019) that is increasingly used by criminals to 

extort large sums of money from individuals and especially companies. Worldwide, it is seen 

by researchers as a major threat in an increasingly digitizing society (Kaspersky, 2020; 

McAfee, 2019; Trend Micro, 2020). 

 

Recently a large university in the Netherlands fell victim to a ransomware infection that 

resulted in the unavailability of IT systems for students and employees and caused great 

social unrest (“Maastricht University paid ransomware attackers ransom,” 2020). In 2017, 

WannaCry had a disruptive effect on the non-virtual world, including the operations of the 

British National Health Service (NHS); people in the United Kingdom may have died as a 

result of the unavailability of data necessary to provide care (Ghafur et al., 2019). 

 

1.2 Problem field analysis 
Various researchers (Chen, 2018; Ganapathi and Shanmugapriya, 2020) argue that artificial 

intelligence (AI) can make a positive contribution in protecting society against the increasing 

threat posed by ransomware. We consider ransomware detection and family identification as 

two separate tasks, following the classification of malware in the literature. We define 

“families” as instances of ransomware with the same origin or a likely common origin and a 

strong similarity in code. 

 

1.3 Research aim and objectives 
The purpose of this research is to (1) contribute to existing knowledge in the field of 

identifying unknown ransomware using AI and (2) propose a practical model that can be used 

by malware analysts when detecting and initially identifying ransomware. We aim to achieve 

a high level of accuracy and a low false positive rate in identifying ransomware and 

classifying a given sample into a known ransomware family. 

 

1.4 Central research questions and associated questions 
To reach the aforementioned objectives, we have formulated research questions. The main 

research question of this study is: 

  

How can deep learning be used to detect and identify ransomware? 

 

To answer the main research question, two theoretical sub-questions and one empirical  sub-

question have been formulated: 

 

1. What are the current methods for detecting and identifying ransomware? 

2. What is deep learning and deep transfer learning? 

3.  

a. How can a pre-trained model be implemented for detecting and identifying 

ransomware? 

b. How effective is this implemented model? 
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1.5 Limitations of the study 
The scope of this research is limited to developing a prototype of a detector. The 

implementation of the detector and the measures that may be taken to limit the effects and 

consequences of ransomware are beyond the scope of this study. This study is focused on 

detecting and classifying Microsoft Windows–based malware because the Windows 

operating system is one of the most common targets of ransomware (Kaspersky, 2020; 

McAfee, 2019; Trend Micro, 2020). 

 

1.6 Structure of thesis 
This report begins by summarizing current literature on malware analysis and similarity 

analysis among malware and ransomware binaries in Chapter 2; from this past research, the 

research gap for present study is identified. In Chapter 3 we introduce our approach to bridge 

the gap. Then in Chapter 4 we discuss the method for scientific research used on this subject. 

In Chapter 5 we describe the experimental environment and the fine-tuning of the 

convolutional neural networks (CNNs) before they can be applied on our use case. In Chapter 

6 we evaluate models for detection and identification of ransomware using image-based 

analysis, and a novel method based on deep transfer learning and MobileNet CNNs to answer 

the main research question. In Chapter 7 the conclusion of the thesis is summarized and 

answers to the research questions are formulated. Finally, in Chapter 8, we discuss the 

literature and methodology used in our study and the overall outcome. This document has 

three appendices; the first contains an explanation of the files in the dataset used in our 

research, the second contains the confusion matrices of the MobileNet models applied on the 

test data and the last contains a description of the system used during the experiments, an 

overview of the software and scripts used and the link to the data repository. 
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2 Literature review 
 

In this chapter, a literature review is conducted covering the key concepts from the research 

questions formulated in Chapter 1 and discussing their relevance to this research. 

 

2.1 Ransomware detection & identification 
In this study, ransomware is defined according to the description used by the Dutch Nation 

Cyber Security Center (NCSC): Ransomware is software that encrypts computer files so that 

users no longer have access to them. Only after payment of the ransom will data or 

documents be made accessible again (MITRE, 2020; NCSC, 2020). 

However, there are no guarantees that files will actually be accessible again after 

payment. Systems are infected with ransomware through files opened by an end user via 

email or by visiting infected websites. The infection and further spread occur because the 

malware exploits vulnerabilities in the operating system, as the well-known WannaCry 

ransomware did (Talos, 2017). Malicious actors can deploy ransomware against many 

different targets. Any system that contains valuable data can be an interesting target, and 

attackers often demand more ransom from large companies, government agencies or sensitive 

data (Loman, 2019). 

Vendors and developers of anti-malware products use detection methods such as 

signature, heuristic or behaviour-based detection (Amro and Alkhalifah, 2015; Sikorski and 

Honig, 2012). In practice, these methods often turn out to be insufficiently effective to detect 

new ransomware or variants of existing ransomware. Gilbert et al. (2019) have conducted an 

extensive literature review of the existing methods of ransomware detection. 

 

2.1.1 Similarity between families 

Looking for similarity between files-based entropy and hashing for detection is a well-known 

technique applied by all AV vendors. However, the rapid increase in malware makes this 

kind of signatures-matching process decreasingly efficient and poorly scalable (Chen, 2018). 

Developers of malware makes changes to it so that the signatures change, aiding in evading 

detection. 

 

Researchers (Ganapathi and Shanmugapriya, 2020; Kaspersky, n.d.; Nataraj et al., 2011) 

argue that different families have functional similarities that can be found in decompiled 

code, making it possible, in principal, to detect them based on the similar features across a 

family. Algorithms can be taught to recognize the similarities when binaries of malware are 

converted into images, and we predict this can be done with ransomware, given that it is a 

type of malware and that families of ransomware also have similarities in code. Figure 1 

shows samples of benign Microsoft Windows executables that are not related. 
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Figure 1 Images of unrelated benign samples 

Figure 2 shows images of samples of the Cerber ransomware family. 

 

   
Figure 2 Images of related Cerber samples  

 

2.1.2 Machine Learning 

Several studies have shown that the malware responsible for file encryption (referred to in 

this study as ransomware) can be reliably detected and identified using machine learning 

(ML) algorithms and techniques (Al-rimy et al., 2018; Nataraj et al., 2011). 

 

There are two aspects that make detecting ransomware with ML and further investigation 

relevant. First, ransomware is becoming more sophisticated and, due to the application by its 

creators of better anti-detection features, more difficult to detect (Dargahi et al., 2019). 

Second, ransomware is evolving so fast that it often cannot be identified reliably using 

current detection techniques. Both factors ensure that malware developers can easily bypass 

detection and thus increase the chance of infection and damage. 

A reliable method for analysing ransomware is static analysis, in which a file is converted 

into machine code and then thoroughly analysed by a human for known patterns. This 

requires specialist knowledge from an analyst and is considered to be very time-consuming 

(Chen, 2018; Nataraj et al., 2011). Machine learning can support analysts in classifying a file 

as benign or malware (Al-rimy et al., 2018, p.; Johns, 2017). 

 

Nevertheless, researchers state that there are limitations to the use of traditional ML 

algorithms for this classification application, of which feature engineering is the most 

important. 
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Machine learning algorithms (MLAs) rely heavily on feature engineering, feature selection 

and feature representation techniques that require an extensive domain-level knowledge 

(Vinayakumar et al., 2019). We derived our definition of feature engineering from the works 

of Kubat (2017) and Sharma et al. (2019): 

“Feature engineering is the process of looking at relevant features in a dataset that can be 

used by an ML algorithm” 

 

We define traditional machine learning algorithms based on linear regression like support 

vector machines (SVMs) and K-nearest neighbour (K-NN) algorithems as shallow learning. 

In general, there are two types of application of ML, and the literature indicates that these can 

assist analysts in identifying malware (Vu et al., 2019): 

1. Feature-based on machine code and/or behaviour (Kolosnjaji et al., 2017); 

2. Imaged-based without feature engineering (Han et al., 2013); 

 

In this study, the second method, introduced by Han et al. (2013), is further investigated. It is 

chosen, firstly, because it can be used to detect malware reliably and then identify it without 

having to convert the software to machine code (disassembly) or run it. Not having to interact 

with the binaries possess advantages because it (1) limits the chance of infecting the system 

used for analysis and (2) reduces the overall complexity of the analysis process. Secondly, it 

has proven to be robust enough against the aforementioned anti-analysis methods used by 

ransomware developers (Al-rimy et al., 2018; Vu et al., 2019). Examples of these anti-

analysis methods are obfuscation, anti-disassembly, anti-debugging and anti-virtual machine, 

all of which prevent analysis as well as traditional feature-based identification of malware 

(Sikorski and Honig, 2012). 

 

2.1.3 Summary 

There are several applications deploying ML-based malware detection techniques that may 

be useful in ransomware detection. Of these, image-based detection appears to be the most 

promising, as it may offer a solution to the problem described in the introduction of this 

study.  
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2.2 AI and Deep Learning 
 

Machine learning, introduced in the previous section, is a sub-domain of artificial intelligence 

(AI). Artificial intelligence is a research field that has existed since the 1950s, and its most 

recent evolution is deep learning (DL) (Müller and Bostrom, 2016). 

 

2.2.1 Deep Learning 

Deep learning is sometimes referred to in (popular) science as AI. Artificial intelligence is 

applied in various domains, including information security (Sewak et al., 2018). The 

following definition of DL is used in this study: 

  

“A class of machine learning techniques that exploit many layers of non-linear information 

processing for supervised or unsupervised feature extraction and transformation, and for 

pattern analysis and classification.” (Deng and Yu, 2013) (p.199) 

 

Deep learning makes use of deep neural networks. This form of neural networks (NN) is 

based on the functioning of the neural networks of the human brain (Krohn et al., 2020). With 

DL, it is possible to develop algorithms that can be applied to solve (multi-) classification 

problems, such as distinguishing between good and malware and distinguishing different 

malware families without having to manually apply feature engineering in advance, which, as 

previously mentioned, is necessary for traditional ML algorithms (Hardy et al., 2016; Krohn 

et al., 2020). 

 

Several existing studies classify malware based on an image. These methods are derived from 

computer vision (CV), which “looks” at an image of a binary (Vu et al., 2019; Yan et al., 

2018) and the textures and patterns it contains. An example of this process is shown in Figure 

3, below. Nataraja et al. (2011) use this same method, except in a traditional MLA, they 

apply an SVM algorithm to a grayscale-converted malware binaries dataset. 

 

 
Figure 3 High level process of conversion of a binary file to image (Hassan, 2019) 

 

2.2.2 Summary 

Artificial intelligence in the form of deep learning is most often used to analyse malware. 

This application could also be useful to achieve the aim and objectives of the present study, 

given the hypothesis that ransomware families have similar properties in the form of patterns 

that can be recognized by an algorithm in a pixel representation of a binary file. This 

hypothesis has in any case been frequently confirmed by researchers for machine code 

(Sharma et al., 2019).   

2. RELATED WORK 
 

Several tools such as text editors and binary editors can both 

visualize and manipulate binary data. Of late, there have been 

several GUI-based tools which facilitate comparison of files.  

However, there has been limited research in visualizing malware. In 

[3] Yoo used self organizing maps to detect and visualize malicious 

code inside an executable. In [4] Quist and Liebrock develop a 

visualization framework for reverse engineering. They identify 

functional areas and de-obfuscate through a node-link visualization 

where nodes represent the address and links represent state 

transitions between addresses. In [5] Trinius et al. display the 

distributions of operations using treemaps and the sequence of 

operations using thread graphs. In [6] Goodall et al. develop a visual 

analysis environment that can aid software developers to understand 

the code better. They also show how vulnerabilities within software 

can be visualized in their environment.    

While there hasn’t been much work on viewing malware as digital 

images, Conti et al. [8,9] visualized raw binary data of primitive 

binary fragments such as text, C++ data structure, image data, audio 

data as images. In [7] Conti et al. show that they can automatically 

classify the different binary fragments using statistical features.  

However, their analysis is only concerned with identifying primitive 

binary fragments and not malware. This work presents a similar 

approach by representing malware as grayscale images.  

Several techniques have been proposed for clustering and 

classification of malware. These include both static analysis [13-19] 

as well as dynamic analysis [20-24].  We will review papers that 

specifically deal with classification of malware. In [24] Rieck et al. 

used features based on behavioral analysis of malware to classify 

them according to their families. They used a labeled dataset of 

10,072 malware samples labeled by an anti-virus software and 

divide the dataset into 14 malware families. Then they monitored 

the behavior of all the malware in a sandbox environment which 

generated a behavioral report. From the report, they generate a 

feature vector for every malware based on the frequency of some 

specific strings in the report. A Support Vector Machine is used for 

training and testing the feature on the 14 families and they report an 

average classification accuracy of 88%. In contrast to [24], Tian et 

al [16] use a very simple feature, the length of a program, to classify 

7 different types of Trojans and obtain an average accuracy of 88%. 

However, their analysis was only done on 721 files. In [17,18] the 

same authors improve their above technique by using printable 

string information from the malware. They evaluated their method 

on 1521 malware consisting of 13 families and reported a 

classification accuracy of 98.8%.  In [20], Park et al. classify 

malware based on detecting the maximal common sub graph in a 

behavioral graph.  They demonstrate their results on a set of 300 

malware in 6 families.  

 

With respect to related works, our classification method does not 

require any disassembly or execution of the actual malware code. 

Moreover, the image textures used for classification provide more 

resilient features in terms of obfuscation techniques, and in 

particular for encryption. Finally, we evaluated our approach on a 

larger dataset consisting in 25 families within a malware corpus of 

9,458 malware. The evaluation results show that our method offers 

similar precision at a lower computational cost. 

3. VISUALIZATION  
 

A given malware binary is read as a vector of 8 bit unsigned 

integers and then organized into a 2D array. This can be visualized 

as a gray scale image in the range [0,255] (0: black, 255: white). 

The width of the image is fixed and the height is allowed to vary 

depending on the file size (Fig. 1). Tab. 1 gives some recommended 

image widths for different file sizes based on empirical 

observations.  

 

 

 

 

 

 

           Fig.1 Visualizing Malware as an Image 

 

Fig. 2 shows an example image of a common Trojan downloader, 

Dontovo A, which downlods and executes arbitrary files [26]. It is 

interesting to note that in many cases, as in Fig. 2, different sections 

(binary fragments) of the malware exhibit distinctive image 

textures. A detailed taxonomy of various primitive binary fragments 

and their visualization as grayscale images can be found in [9].  

 

 

                  

Fig. 2 Various Sections of Trojan: Dontovo.A 

 

The .text section contains the executable code. From the figure, we 

can see that the first part of the .text section contains the code 

whose texture is fine grained. The rest is filled with zeros (black) 

indicating zero padding at the end of this section. The following 

.data section contains both uninitialized code (black patch) and 

initialized data (fine grained texture). The final section is the .rsrc 

section which contains all the resources of the module. These may 

also include icons that an application may use.  
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011100110101
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2.3 Convolutional Neural Networks  
 

There are DL architectures that can be used for various applications (Hosseini et al., 2020). A 

convolutional neural network is an NN architecture that is deployed at DL in various 

domains, the best known of which is photo or image classification (Cawsey, 1998; 

Krizhevsky et al., 2012). A CNN is therefore frequently used in the aforementioned CV 

research domain (Baltrušaitis et al., 2018). The CNN architecture is based on the functioning 

of the human visual cortex (Krohn et al., 2020). 

 

Deep learning algorithms with a CNN architecture are mentioned in several studies (Hardy et 

al., 2016; Vu et al., 2019; Yan et al., 2018) as a reliable application of ML to distinguish 

malware from benign software using feature engineering techniques such as image gists and 

Scale Invariant Feature Transform (SIFT) (Xie et al., 2017). 

Because these types of NN are primarily intended to recognize patterns in data using the 

aforementioned techniques, the NN “learns” by itself the features of the input data using a 

technique called back propagation (Géron, 2019; Krohn et al., 2020). 

 

In 2017, research was conducted by the FireEye company into CNN architectures that are 

used in a detection system. This method was found to be suitable for classifying malware 

packaged in Microsoft Windows Portable Executable (PE) files. In the FireEye study (Coull 

and Gardner, 2019), these files, before they were presented to the detector, were converted to 

grayscale representations as described in the previous section. 

 

The method used was a form of supervised learning in which a person had pre-labelled what 

in this case consisted of malware and benign software (Kubat, 2017). FireEye’s research 

looked at which features were identified by the ML model as interesting and which a 

malware analyst would find relevant in traditional static analysis. The scores achieved by 

manual classification and by the algorithm were compared. The accuracy of this model was 

98%, and a dataset of 3 million benign and 3 million malware samples was used. 
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2.3.1 Architecture  

As described earlier, NNs have an architecture. A CNN is a network architecture with several 

layers between the input and the output layer; these are called hidden layers. An architectural 

drawing is shown in Figure 5, below. In general, the hidden layers consists of convolution, 

pooling and fully connected layers. 

 

 
Figure 4 Typical Convolution Neural Network (Keras,2020) 

 

These hidden layers are responsible for feature extraction, in which the features together form 

a part or a whole pattern that can be recognized by the algorithm in order to classify a sample 

as benign or malware (Géron, 2019; Krohn et al., 2020). 

 

Deeper neural networks, in general, prove to have better accuracy then shallow networks, as 

Simonyan and Zisserman (Simonyan and Zisserman, 2015) and Bohida et al. (Bhodia et al., 

2019) have demonstrated. Bohida et al. compared shallow K-NN models with deep ResNet 

models and proved deep neural networks (DNN) performed better due to the fact there are 

more features to extract resulting in more parameters to train.  The downside of DNN’s is the 

high need of training samples and CPU/GPU resources to train them effectively.    

2.3.2 Resource intensive 

Deep learning is resource intensive, which means that sufficient (1) training data and (2) 

hardware in the form of computing power (CPU / GPU) and memory (RAM) must be 

available to train a model sufficiently (Claufield, 2009; Rawat and Wang, 2017; Vu et al., 

2019). 

As described above, FireEye used 3 million malware and benign samples in their study to 

train their model; however, marshalling this amount of training data can be a challenge for 

independent researchers. 

 

2.3.3 Summary 

Deep CNN architectures (DCNN) could contribute to the solution to the problem of this 

study. Solutions are provided to the limitations in its usability, including the following: 

- Deeper networks tend to have better accuracy; 

- Large amounts of data are needed to train a CNN in general; 

- Training a CNNs takes significant time, and without the right hardware it takes hours 

or even days.  
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2.4 Deep Transfer Learning  
 

2.4.1 Transductive Transfer Learning 

Pan and Yan (Pan and Yang, 2010) describe the different methods of deep transfer learning 

(DTL). The transductive transfer learning (TTL) method may offer a solution to the 

aforementioned limitations. There are similarities between the source and target tasks, but the 

corresponding domains are different. The source domain has a vast amount of labelled data, 

while the target domain, in this case ransomware, still has relatively little. 

 

The transfer of parameters of the neurons is in this study considered TTL. These parameters 

are the biases and weights that can be used in ransomware classification to (1) shorten 

training time and (2) increase the reliability of an algorithm (Tan et al., 2018). 

 

2.4.2 Pre-trained CNN’s 

The application of TTL is therefore the use of a pre-trained CNN, also referred to as a model, 

on another application domain. Several pre-trained CNN models are publicly available. These 

are trained on images from the ImageNet dataset, which contains more than 14 million 

labelled natural images in 1000 categories (ImageNet Project, n.d.). 

 

There are CNNs implemented in publicly available deep learning software libraries such as 

TensorFlow (https://www.tensorflow.org) and Keras (https://keras.io). 

 

2.4.3 Models applied in other studies  

Table 1 shows the different deep models and their accuracy as described in (scientific) 

literature and the results of applying transfer learning on a malware dataset. 

 

We can conclude that (1) the models used are very deep, (2) the weights and biases of the 

aforementioned ImageNet dataset were used and (3) the binaries in the dataset were 

converted into grayscale images. Furthermore, all but one study used the same malware 

datasets. 

 
Table 1 Models found in literature 

Model Grayscale Used in 

Study 

Accuracy 

(%) 

Dataset 

Xception Y (Lo et al., 

2019) 

99.03 Malimg (9339 samples of malwares 

belonging to 25 malware types) & 

Microsoft (10868 samples of malware 

belonging to 9 malware types) 

VGG16 Y (Kalash et al., 

2018) 

98.52 Malimg (9339 samples of malwares 

belonging to 25 malware types) & 

Microsoft (10868 samples of malware 

belonging to 9 malware types) 

ResNet50 Y (Khan et al., 

2017) 

87.98 Microsoft (10868 samples of malware 

belonging to 9 malware types) 

InceptionV3 Y (Chen et al., 

2019) 

90.0 Other (10,849 samples of malware and 

11,153 benign samples) 

Ensemble of 

InceptionV1 

Y (Chen, 2018) 99.07 Other (584,606 samples of malware and 

197,604 benign samples) 

 

https://www.tensorflow.org/
https://keras.io/
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2.4.4 Transfer scenarios 

There are various scenarios, described by Tan et al. (Tan et al., 2018), in which to use the 

pre-trained models, including (1) using the features from the model, (2) fine-tuning the model 

if the application domain is close to the original domain or (3) using a pre-trained model. 

 

2.4.5 Summary 

Deploying DTL by implementing a pre-trained model can significantly reduce the training 

data needed, reduce the overall training time and increase the reliability of the detector. The 

feature extraction scenario and fine-tuning could be a suitable approach because it is seen by 

several researchers as a solution for reducing the time required to train a model. Pre-trained 

models are non-existent in this line of research. 

 

Chen (2018) proposes an approach for applying DTL in the classification of malware binary 

into two classes (benign or malware). This research is the main inspiration behind our 

approach. Chen offers the most detailed description of the approach that we found in the 

literature. 
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3 Proposed approach 
 

We adapted the approach of Chen (2018), as shown in Figure 5, to multi-classification on 

our ransomware dataset. We use Figure 5 as a conceptual model throughout this chapter to 

clarify the research in conjunction with our approach. 

 

 
Figure 5 Proposed approach 

To add to the validity of the three main phases of this approach, it is believed to be the 

current state of the art and best practice in (1) data science and (2) in ML projects in general.  

 

3.1 Pre-processing 
During pre-processing, the first phase shown in Figure 5, we convert a ransomware binary to 

an m x m, three channel matrix (RGB). The process and the result are shown in Figure 6. We 

apply a mean RGB subtraction to normalize the input data for the CNN. For that purpose, we 

need to calculate the mean value across one whole sample and subtract it from each number 

in it. In the Keras API we use the sample-wise center option for this purpose. 

 

Our method differs from the ones found in the literature because we use RGB images instead 

of the grayscale images used by Nataraja et al (2011). Second, we deviate from his method 

by not converting binaries in opcode before converting them to images. In this way we avoid 

(1) the need to identify the packager used and (2) unpacking the binaries, which is an error-

prone and time-consuming process, as stated by Gibert et al. (2020).  

 
Figure 6 Binary to pixel conversion 

We reshape and resize the mostly rectangular images (m x n) of pixel representation of a 

binary to the default-size square shape (m x m) of a CNN input tensor, following the CNN 

implementation guides provided by Keras. 

 

3.2 Transfer learning 
In the transfer learning phase of the process illustrated in Figure 5, we use a pre-trained CNN 

on the ImageNet dataset of natural images (ImageNet, n.d).  
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As stated in the literature review, it is well known that deep neural network topologies lead to 

better accuracy. However, many of the models have never been used to classify malware or 

ransomware in the published literature.  

 

We add layers for additional feature extraction and replace the original classification layer of 

the CNN with a new dense layer of 8 classes with a Softmax activation function.  This layer is 

used to classify a sample. 

 

In the transfer learning phase shown in Figure 5, we evaluate the different pre-trained CNNs 

on the dataset and train the last few layers we added to the CNN. This approach is called fine-

tuning (Keras, 2020) a model so it can be applied on the dataset and problem or use case of 

this study. 

 

3.3 Evaluation 
We adopt a naïve approach in selecting the best performing CNN implementation by iterating 

over the different pre-trained and fine-tuned models. Finally, in the evaluation phase shown 

in Figure 5, we evaluate the models’ performance, searching for the best results to meet the 

stated requirements. 

 

3.4 Requirements  
We derived four requirements for our solution (the artifact) from literature and best practices 

in the security practitioner’s community. The model used for the detector must achieve at 

least 90% accuracy, a low false positive rate (FPR) and the lowest possible false negative 

rate (FNR). This is achieved in similar studies (Chen, 2018; Kolosnjaji et al., 2017). The 

detector is considered reliable and useful if it 

1. can classify unknown binaries as ransomware; 

2. can classify ransomware in different families; 

3. can be trained using a limited amount of resources (e.g. number of samples). 
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4 Research methodology 
In this chapter the research method is explained, beginning with design science research 

(DSR), consisting of the literature review and the description of the empirical part of the 

research. 

 

4.1 Design science research  
In this study, the DSR method is applied to develop a practical solution to the problem 

described in Chapter 1 and is scientifically validated and evaluated. This determines whether 

the solution can also be used in the context of the research (Wieringa, 2014). This method of 

research fits in with the problem defined in the proposed study because it tries to develop an 

artifact that contributes to or is a solution to a problem that occurs in practice: in this case, 

detecting and identifying ransomware with limited use of resources. 

 

4.2 Literature review 
A literature review was carried out in the form of a systematic literature study to form a 

theoretical framework and thus be able to answer the theoretical sub-questions. The insights 

obtained through this process are necessary for drawing up the requirements and ultimately 

the design of the artifact: a prototype of a ransomware detector and classifier. 

 

The literature review was conducted using sources available through the library of The Hague 

University of Applied Sciences. A search was made for various keywords from the problem 

definition and combinations of those keywords, and a pre-selection was made within the 

literature found. For example, literature was chosen that is no more than five years old 

because the detection of ransomware and AI is a field that is developing very quickly. In 

addition, however, a number of fundamental research papers were consulted that are more 

than five years old. 

  

4.3 Experiment 
In the empirical part of the research, an experiment was carried out in which the artifact 

(detector) was tested, evaluated and validated for usability in a practical situation. 

 

A lab environment was configured to (1) pre-process benign and ransomware samples and 

divide them into the necessary datasets to train, validate and test the model;  (2) train the 

model for a longer period of time (e.g. a number of hours); and (3) perform the experiment 

(validating and testing the detector). This was done in several iterations in order to improve 

the detector and thereby increase its reliability, accuracy and usability. 

 

4.3.1 Detector & classifier 

In this study we define a detection system as an output of a single value 𝑦 = 𝑓(x), in the 

range 0 to 1, which indicates the maliciousness of the executable. 

Furthermore, a classification system outputs the probability of a given executable to each 

output class or family, 𝑦 ∈ ℝ𝑛, where n indicates the number of different ransomware 

families (Gibert et al., 2020).  

 

The detector is developed in the programming language Python (https://www.python.org/) 

and uses the TensorFlow machine learning framework (https://www.tensorflow.org/) 

combined with Keras as TensorFlow API also written in Python (https://keras.io/) and further 

supported by a number of different supporting software libraries. The models implemented in 

the Keras API will be evaluated during the experiment. 

https://www.tensorflow.org/
https://keras.io/
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This software stack was selected (1) because it was found in many sources in the literature 

search and (2) because the researcher has considerable experience with the programming 

language mentioned. Together, these form an open source framework that is used for the 

development of the detector and classifier. Using this opensource software stack contributes 

to the transparency of this research and the usability of the solution. 

 

4.3.2 Constraints 

Training a CNN is generally faster if systems are equipped with multiple graphics cards 

(GPUs) or Tensor Processing Units (TPUs); however, these systems are very expensive and 

not available for this research. Therefore, the speed of training and classification is not a 

decisive factor in assessing the results of the study. The most important limitation is in 

obtaining sufficient samples to compile an adequate ransomware dataset. Extensive malware 

datasets containing ransomware are generally not shared by anti-malware vendors with 

independent researchers because they form part of the business model used by these 

organisations; therefore, researchers must collect samples themselves. This method is used in 

several existing studies (Al-rimy et al., 2018). 

 

4.4 Data gathering methods  
For this research a dataset with malware was made available to us by VirusTotal (VT). VT is 

a community-driven security platform and is recognised in academia and by practitioners as 

an authority on malware analysis. The selected models, as described in the approach, were 

trained and tested on samples from this dataset.  

 

We conducted a systematic analysis with the use of Exploratory Data Analysis (EDA) 

(Guthrie, 2020) techniques on the received samples. With EDA we aim to (1) gain insights 

into the distribution of the families versus samples size and (2) determine the data quality 

(e.g. correct labelling) and integrity of the files supplied.  

 

To make the results of the research as representative as possible, samples of recent 

ransomware and a number of well-known ransomware families as described by Hassan 

(Hassan, 2019) were part of the selection. We selected the ransomware based on the family 

name. This name was human-readable and set by Microsoft as a label, which is available in 

our dataset. This is considered as our ground truth. 

 

 
Figure 7 Data processing 

 

The dataset for validation was used, as shown in Figure 7, to measure validation accuracy, 

which indicates the extent to which the model generalizes, meaning it does not under- or 

overfit during training. 
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The scripts and configuration files of the lab environment are stored in a GitHub repository 

(https://github.com/azeus404) which is publicly accessible so that the steps used during the 

data pre-processing and experimental part of the research can be reproduced. The dataset has 

been archived and can be made available for peer-review. Given its size (around 320 GB) it 

cannot be uploaded to GitHub. More importantly, the legal limitations set by VT prevent us 

from further distributing this dataset. Due to these restrictions, it cannot be made available in 

the aforementioned repository. 

 

4.4.1 Malware dataset 

This dataset contained 347,307 malware samples with labels from multiple AV suppliers 

recorded in the JSON file accompanying each sample. These samples were collected between 

2017 and 2020. From this dataset we selected the samples based the malware families as they 

were named by Microsoft and used this label as our ground truth. This resulted in a total of 

282,650 unique samples consisting out of 10 types of malware. Appendix 1: Dataset, 

provides an in-depth explanation of contents of the aforementioned JSON file and an 

example. The distribution of malware types and the number of samples present in the VT 

dataset are shown in Figure 8. 

 

 
Figure 8 Malware in ransomware research dataset 

 

4.4.2 Benign dataset 

We added benign samples to the ransomware dataset, as in the study by FireEye (Coull and 

Gardner, 2019), so the classifier could identify ransomware or benign software. These samples 

were collected from executables from a clean-installed version of the Microsoft Windows 10 

operating system. This benign dataset contains 900 unique samples and was added to the pre-

processed VT dataset, in this study designated and referred to as the ransomware research 

dataset (RRD).   

 

4.5 Selection of samples  
We decided to use the Microsoft’s classification label as ground truth, because here the 

names of the ransomware families in the dataset are easily identifiable. The dataset used by 

Nataraja et al. (2011) was also based on the Microsoft labels as ground truth. The MalImg 

dataset (Ronen et al., 2018), derivative of the Nataraja dataset, is also used in many of the 

https://github.com/azeus404
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studies mentioned in the literature review. In total there are 53 unique ransomware families 

present in the VT dataset. 

 

A selection of the ransomware families was taken from the dataset and ransomware, and 

families with fewer than 50 samples were excluded from the study, as they would contain 

insufficient data to make a training, validation and test set. 

 

Table 2 shows the ransomware families (as detected and labelled by Microsoft) that were 

selected after processing the VT dataset. After some data cleansing steps, the dataset 

contained 7,042 samples ready to be pre-processed. The data cleansing activities consisted of 

removing duplicate samples and correcting spelling mistakes in the labels. We also added 

900 benign samples as previously described.  

 
Table 2 Ransomware families 

Family name Number of Samples 

ransom:win32/tescrypt       3,412 

ransom:win32/gandcrab       1,276 

ransom:win32/crowti          618 

ransom:win32/locky           600 

ransom:win32/cerber          548 

ransom:win32/genasom        243 

ransom:win32/wannacrypt      138 

ransom:win32/enestaller       98 

ransom:win32/milicry         57 

ransom:win32/haperlock        52 

  

Total 7,042  

 

 

4.6 Image distortion 
Most of the CNNs trained on ImageNet dataset have a default input size, called an input 

tensor. The default sizes were retrieved from the documentation of the Keras API (Keras, 

2020):  

• 224 x 224; 

• 299 x 299; 

• 311 x 311. 

This means that if the images in the training set are smaller or of a different shape, they will 

be distorted if they are resized and reshaped to the default input tensor size. Too much 

distortion has a negative impact on the accuracy of the model, as noted by Chen (2018). 

Therefore, smaller images were disregarded in the training of the models. 

 

The distribution of image size over the selected ransomware is presented in Figure 9, which 

shows that the majority of images have a width of 384 pixels and a height of 342 pixels. 

Image size is regarded in the literature (Chen, 2018; Gibert et al., 2020) as an important 

hyperparameter for a model. We selected images with a minimum size of 112 x 112 to train 

our images to reach an optimum number of samples and minimize the effects of distortion. 

After this final selection, the total dataset (RDD) contained 6,310 (n = 6,310) samples. 
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Figure 9 Distribution of image sizes by samples in the final dataset. 

 

4.7 Imbalanced distribution of samples 
Imbalanced datasets in general are a common phenomenon in all reviewed studies. We 

identified an imbalance of 36:1 in the number of samples per class. It was necessary to 

average out the differences between the majority (Tescrypt a.k.a Teslacrypt) and the minority 

class (Wannacrypt a.k.a Wannacry) and take measures to counter this imbalance while 

training a model because imbalanced datasets often results in a bias to the majority class and 

make the model less useful (Gibert et al., 2020). The imbalance in our dataset is shown in 

Figure 10. 

 
Figure 10 Distribution of families – imbalance dataset 
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The Python software libraries used in this study have their own implementations based on 

class weight functions. This function adds weights to classes, which causes the model to “pay 

more attention” to examples from an under-represented class. 

We used one of the Scikit-learn (Sklearn) built-in methods to account for the imbalance and 

implemented it in code. Other methods, such as under- or oversampling, image augmentation 

and SMOTE (Yue, 2017), were not viable solutions for our use case because we use images 

of byte representations of binaries and not natural images (of cars or dogs, e.g.), which can be 

flipped horizontally to count as a new training sample.  

 
4.8 Training, validation and testing set 
We partitioned the RRD into a training set (90%) and a testing set (10%). This split ratio is 

common in ML-related studies and practical implementations when using a limited number  

of samples (Géron, 2019). We use a method of stratified sample selection to retrieve a 10% 

selection of samples from processed dataset; this data was set aside to be used for final 

evaluating (testing) the overall performance of the model. The remaining 90% of data was 

randomly split again in an 80% and 20% partition during the initialisation of the model and 

was used for training and validation of the model. The final partitioning and the number of 

samples in the aforementioned datasets are shown in Table 3. 

 
Table 3 Training, validation & testing split 

Dataset Number of samples (images) 

Training  4,547 

Validation  1,132 

Testing 631  
Total 6,310 

 
4.9 Model selection 
In this study we implemented different models found in the literature and added the models 

found on the Keras webpage. As stated in the approach, we used a naïve method by iterating 

over viable solutions and checking whether they met the requirements. The best solutions, 

based on their performance, were selected. This method and approach are part of the design 

cycle common in DSR, the overall research method used in our study (Wieringa, 2014). 
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4.10 Model Evaluation 
In this study we use different methods to evaluate the models’ performance in classification. 

These methods were derived from those we found in the literature to aid reviewers in 

comparing and validating our research (Wieringa, 2014). We use a confusion matrix, recall, 

precision, F1 score and accuracy. The equations and a short description are given below.  

 

Confusion matrix: A method used to evaluate the model’s performance. In the matrix 

classes are scored based on the instances of correct classification for a given class (Géron, 

2019).  

 

Recall: The ratio of positive correctly identified samples by the classifier to what the actual 

label or ground truth was (Géron, 2019). A perfect recall or sensitivity score equals 1.0 and 

implies no false negatives or FNR equal to 0. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Precision: The ratio of correctly predicted positive observations to the total predicted 

positive observations (Géron, 2019). A perfect precision score equals 1.0 and implies no false 

positives or FPR is equal to 0. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

F1 score: This score is a combination of the aforementioned metrics recall and precision and 

is used to compare classifiers or models (Géron, 2019). 

 

𝐹1 =
𝑇𝑃

𝑇𝑃 +
𝐹𝑁 + 𝐹𝑃

2

 

 

Accuracy: Accuracy is the number of correct predictions out of the total examples (Géron, 

2019). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

 

TP = True Positive 

FP = False Positive  

FN = False Negative 

TN = True Negative  

 

FNR = False Negative Rate 

FPR = False Positive Rate 
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5 Experimental environment & fine-tuning 
 

This chapter provides a brief description of the experimental environment and the fine-tuning 

applied on the CNNs. 

 

5.1 Experimental environment 
We implemented the proposed approach in an experiment. The experiment was conducted in 

an isolated lab environment with the dataset made available by VT. The specifications of the 

hardware and software used and the configuration of the lab environment were recorded, and 

the datasets were saved so that the experiment could be repeated with the same parameters 

and the results could be peer-reviewed; this contributes to the validity and reproducibility of 

the research. The specifications of the computer system used are described in Appendix 3: 

System specifications. The pre-trained weights, on the ImageNet dataset, were downloaded 

during the initialisation of the model. The scripts and Jupyter notebooks used to analyse the 

data are available on GitHub https://github.com/azeus404/thesis . 

 

5.2 Fine-tuning 
Fine-tuning the model is the process of modifying the classification part of the selected CCNs 

for our use case. Figure 11 shows an overview of a typical CNN divided into input, feature 

extractor and classifier parts. 

 

 
Figure 11 Example CNN feature extractor and classifier (Google,2020). 

As discussed in Chapter 3 and illustrated in Figure 5, we modified the model 

hyperparameters by tweaking the classification part (Figure 11) of the model and adding a 

GlobalAveragePooling2D pooling layer for reducing the output (dimensions) from the pre-

trained CNN. 

For the classifier part of Figure 11, we 

• added a fully connected or dense layer with 1,024 neurons with a ReLu activation 

function additional feature extraction. This neuron size is the output size of the 

pooling layer of the feature extraction part of our model. 

• added a fully connected or dense output layer of 8 neurons with a Softmax activation 

function for the prediction of the classes. 

A CNN has hyperparameters such as an optimisation algorithm and a loss function. We 

applied an Adam optimisation function with a relatively high learning rate and a categorical 

cross entropy loss function which computes the cross-entropy loss between the labels and 

predictions, suited for a multi-class problem.  

https://github.com/azeus404/thesis


   

 

Master thesis Cyber Security Engineering - The Hague Graduate School 30 

6 Results of the study and analyses 
 

6.1 Introduction 
In this chapter we present the results of our study, beginning with a description of the 

experimental results and proceeding to an interpretation of the results. 

 

6.2 Experimental results 
The results of the experiment are described, and the detector is evaluated by looking at its 

performance using a set of evaluation metrics consisting of a confusion matrix (CM) and 

derivatives such as recall, precision and accuracy, as presented in Chapter 4. 

 

The extent to which the detector is able to correctly classify samples based on these 

evaluation methods is described and compared with the techniques that have been applied in 

the existing literature (Chen, 2018; Vu et al., 2019). 

 

We compared different CNN architectures as described in the research methodology and 

approach models presented in Table 4. In the table, the total parameters, the number of 

trainable parameters and the input shape or tensor are shown for a given model. 

 

During the experiment the models were trained for 50 epochs, a batch size of 64 samples per 

epoch and a high learning rate of 1 ∗  10−3 (1e-3), the default value of the Adam optimizer, 

for stochastic gradient descent; this algorithm is used for back propagation (Kingma and Ba, 

2017). Batch size and learning rate are hyperparameters (Géron, 2019) and can be further 

tuned during the final implementation of the detector. In the literature, 32 is used as a default 

batch size, but the decision depends mainly on the amount of available GPU RAM and the 

size of the training dataset (Géron, 2019; Masters and Luschi, 2018). We decided to use 64 

because (1) we had sufficient GPU RAM available and (2) it gave the best results for our use 

case as it reduced the training time and led to a better-fitting model. 

 

We applied an early stopping call-back function – if the validation accuracy did not improve 

for 5 epochs the training halted and the best model weights were saved – and an additional 

function to stop the training if a NaN value of loss was reached. 

 
Table 4 Implemented models and parameters 

# Model Total params Number of 

Trainable 

params 

Input shape 

(ImageNet) 

1 ResNet50 25,694,088 25,640,968 224 x 224 x 3 

2 InceptionV3 23,909,160 2,106,376 299 x 299 x 3 

3 ResNet50V2 25,671,176 2,106,376 224 x 224 x 3 

4 ResNet101V2 44,732,936 2,106,376 224 x 224 x 3 

5 ResNet152V2 60,438,024 2,106,376 224 x 224 x 3 

6 VGG19 20,557,896 533,512 224 x 224 x 3 

7 Xception 22,967,856 2,106,376 299 x 299 x 3 

8 VGG16 14,981,448 266,760 224 x 224 x 3 

9 DenseNet121 8,095,304 1,057,800 224 x 224 x 3 

10 DenseNet169 14,356,040 1,713,160 224 x 224 x 4 

11 MobileNet 4,286,664 1,057,800 224 x 224 x 3 
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12 MobileNetV2 3,577,928 1,649,928 224 x 224 x 3 

131 NASNetMobile 5,326,716 1,124,648 224 x 224 x 3 

14 NASNetLarge 89,184,122 4,267,304 331 x 331 x 3 

15 InceptionResNetV2 55,873,736 1,582,088 299 x 299 x 3 

16 EfficientNetB7 66,728,351 2,630,664 224 x 224 x 3 

 

As shown in the input shape column, the input shapes are fixed because we used ImageNet 

weights. After the experiment we collected the data; the models’ scores are shown, ranked by 

accuracy, in Table 5.  

  
Table 5 Model performance 

Model F1 Recall Precision Loss Accuracy 

MobileNetV2 0.8479 0.8482 0.8498 0.6495 0.916 

MobileNet 0.8503 0.8603 0.8429 0.3466 0.9049 

ResNet50 0.8034 0.8239 0.8009 0.4271 0.8748 

NASNetLarge 0.8134 0.8204 0.8163 0.7944 0.8605 

InceptionV3 0.782 0.7749 0.8018 0.8289 0.8479 

InceptionResNetV2 0.7615 0.7855 0.7468 0.4958 0.8463 

VGG16 0.5764 0.6709 0.5414 1,05E+32 0.6149 

ResNet152V2 0.5147 0.5943 0.5372 41.622 0.5563 

ResNet50V2 0.2457 0.2865 0.2911 85.631.211 0.3994 

ResNet101V2 0.26 0.2874 0.2864 4363799.5 0.3217 

Xception 0.0135 0.125 0.0071 NaN 0.0571 

VGG19 0.0135 0.125 0.0071 NaN 0.0571 

EfficientNetB7 0.0135 0.125 0.0071 NaN 0.0571 

DenseNet121 0.0135 0.125 0.0071 NaN 0.0571 

DenseNet169 0.0135 0.125 0.0071 NaN 0.0571 

 

The models with the required accuracy of 90% plus established in Chapter 3, section 3.4 are 

listed below in Table 6.  
 

Table 6 Comparing model results on test dataset 

Model F1 Recall Precision Loss Accuracy 

MobileNetV2 0.8479 0.8482 0.8498 0.6495 0.916 

MobileNet 0.8503 0.8603 0.8429 0.3466 0.9049 

 

Due to the stochastic nature of training CNNs, it is possible to reach the same results on 

either of the models. This is a common problem when training models in general and on 

GPUs (Géron, 2018). The differences in performance are in our opinion too slight to justify 

favouring one over the other.  

 
1 Despite our efforts we failed to successfully implement this model. 
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In our study false positives are considered as important as false negatives for malware 

analysts because being unable to identify a sample as ransomware or as belonging to a known 

family does not help the malware analysts, as described in the aim of our study. 

 

The MobileNet and MobileV2 models reach around 90% accuracy on the test data in 21 

epochs on the validation data. The experimental results are shown in Table 6. 

As shown Figure 12 the macro average recall of 0.86 and 0.85, macro average precision score 

of 0.84 and 0.85 and similar F1 scores on 631 samples in the test set. 

 

 

 

Figure 12 Classification reports (top MobileNet and bottom MobileNetV2) 

 

 

The MobileNet and MobileNetV2 models score around 90% on the 631 stratified test samples 

over the 8 classes, the benign samples and the ransomware families. The confusion matrices 

of the aforementioned models are provided in Appendix 2: Confusion matrices 
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6.3 Interpretation and discussion 
We began the experiment with the models with the deepest layers as suggested by the 

literature review.  The experimental results show that it is possible to use CNN and apply 

transfer learning models trained on natural images from the ImageNet dataset on a new 

domain such as ransomware. 

 

We initially tried grayscale images but ended up using RGB because training on grayscale 

images did not reach the desired 90% accuracy.2  

 

The deeper models, 3, 4, 5 and 16, are the models with significantly more parameters, as 

shown in Table 4. Surprisingly, they failed to fit the training data and had high losses or 

resulted in NaN errors. We consider model 14 (NASNetLarge) to be an outlier; this was the 

deepest network we evaluated, and it had a fair accuracy of 86%. This result counters the 

insights found in the literature that deeper networks tend to have better accuracy; in our case, 

the less deep networks 11 (MobileNet) and 12 (MobileNetV2) performed better than the 

deeper ones on our dataset.  

 

As shown in Figure 12, both MobileNet models score as required on the classification task.  

As expected, Teslacrypt, as the majority class, was identified correctly most of the time and 

Wannacrypt, as the minority, not at all, despite training the model with class weights to 

counter imbalance. What is more, some classes were confused or misclassified by the 

detector, but this could give malware analysts an indication of or clue to their origin. 

 

Due to the stochastic nature of training CNNs, it would be possible to reach the same results 

on either of the models if the experiment were to be repeated. The differences in performance 

are, in our opinion, too minimal to justify favouring one model over the other. 

  

 
2 The results of the experiment on grayscale images are also available on https://github.com/azeus404 

https://github.com/azeus404/thesis
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7 Conclusions and future research  
7.1 Introduction 
Our research adds to the body of knowledge on ransomware by adding a novel approach that 

applies a form of AI – deep learning and transfer learning, as we call it – to a ransomware 

classification problem referred to us as a use case. As we stated in the introduction to this 

study, we aim to aid malware analysts in identification of new ransomware families after 

detection. 

 

7.2 Review of research questions 
In this section we present the answers to our research questions, titled RQ 1 through 3, and 

the main research question. 

 

7.2.1 Review of the research questions  

RQ 1 

The current methods for detecting ransomware are based on dynamic and static analysis. 

Static analysis relies on the heuristics, signatures and specialized domain knowledge of the 

analyst, who focuses on the behaviour of the ransomware interacting with a simulated victim 

system. In the literature review we found indications that image-based ransomware 

classification is still relatively new in this field of study. There were no publicly available 

research papers found on this subject. Current identification methods are aimed at the 

malware problem as a type classification without focusing on individual subclasses like 

ransomware families. State of the art ML or shallow learning approaches tend to need a 

significant amount of feature engineering and domain knowledge but can, with a limited 

number of features, be very effective in identifying malware and may be able to classify 

ransomware into families. To eliminate the need for extensive feature engineering, we 

transformed the ransomware classification problem into an image classification problem. 

 

RQ 2 

To resolve image classification problems, DNNs and especially CNNs have proven to be 

very capable in the field of image recognition and computer vision. However, they need a 

vast number of training samples. Deep learning and deep transfer learning involve the use of 

neural networks and transfer learning based on training the DNN in general on a dataset and 

using what is learned on another domain. However, although malware and ransomware are 

related, there is no trained model available. Therefore, ransomware image classification 

challenges have to rely on models trained on natural images. Deep learning, as opposed to 

traditional shallow learning methods, seems to be a viable solution and aids us in reaching 

our objectives. 

 

RQ3 A and B 

We successfully implemented a pre-trained CNN and changed the classifier part to our 

ransomware classes. In the empirical part of our study, we evaluated the performance of the 

model and reached satisfactory results. During the implementation of the classifier as part of 

a detector, there is a need for further fine-tuning of the hyperparameters. Additional fine-

tuning can boost the accuracy by between 5% and 10% (Géron, 2018). 
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7.2.2 Review of the main research question 

The DL models used in our research, MobileNet and MobileNetV2, were pretrained on an 

ImageNet dataset, and transfer learning was applied with the weights, resulting in a 90% 

accuracy on our ransomware dataset and proving that a CNN can be used for detecting and 

identifying ransomware families based on images and that using DTL, and TTL in particular, 

to aid the speed of training and accuracy is possible. 

 

We discovered that grayscale images, used in multiple prior studies, did not prove to reach a 

90% plus rate of accuracy on our dataset and in our use case, identifying and predicting 

families of ransomware. However, the results of our study demonstrate that we can reach the 

same or better results using 3-channel (RGB) images. This discovery adds a novel insight to 

the body of knowledge in this field.  

 

There is a limited number of ransomware samples available and a lot of single instances, 

hence the need for application of deep transfer learning. We believe that our method is 

capable of detecting unseen ransomware based on the trained features of our model and is 

able to give at least a hint of possible family relations as stated in Chapter 6, section 3. 

 

7.3 Future research 
Image size is a key hyperparameter that needs to be taken into account during training and 

validation of the model, since malware developers can manipulate samples with additional 

random bytes, changing the file size after conversion of the image size. This results in a 

sample that cannot be detected using this image-based detection approach. Therefore, future 

research must be aimed at improving the robustness of the classifier in relation to variance in 

image size.  
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8 Discussion and reflections 
In this chapter we discuss and reflect on the literature, methodology and outcomes of the 

research. 

 

8.1 Literature 
There was no literature available regarding image-based classification of ransomware 

samples. However, the classification of ransomware can be regarded as a sub-task of the 

classification of malware. We reviewed state-of-the-art articles in the field of machine 

learning and deep learning in security and other fields of study like medicine and computer 

vision in general. The literature and our review form a sturdy base for the empirical research 

in this study. 

 

8.2 Methodology 
We could achieve better results if more data were available for training a model; however, 

2.5% of the malware samples collected by VT were detected by Microsoft as ransomware. 

Therefore, this may not be feasible.   

 

When adversaries use smaller or larger binaries, which result in our method in larger images, 

this has a negative effect on the detection rate, as noted by Chen (2018).   

Therefore, as demonstrated by Chen (2018) and Gibert et al. (2020), image size is a 

hyperparameter that needs to be fine-tuned, and there is a constant need to re-train this model. 

 

We did not add other forms of malware to our dataset because the effects of ransomware are 

clear. As a result, malware analysts know already whether a sample contains ransomware but 

need to identify the family. 

 

8.3 Outcome 
We consider this study to be an addition the existing body of knowledge regarding malware 

detection and identification in general. Analysts can be aided in their tedious work by our 

approach, so this study has practical value. In addition, it can serve as an inspiration for 

future research as stated in the Conclusions chapter of this study.  
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Glossary 
 

  

  

AI Artificial Intelligence 

ANN Artificial Neural Networks 

API Application Programming Interface 

AV  Anti-virus 

CM Confusion Matrix 

CNN Convolutional Neural Network 

COTS Commercial Of The Shelve 

CPU Central Processing Unit 

CV Computer Vision 

DNN Deep Neural Network 

FPR False Positive Rate 

GPU Graphical Processing Unit 

KNN k-Nearest Neighbours algorithm 

ML Machine Learning 

MLA Machine Learning Algorithms 

NN Neural Networks 

PCA Principal Component Analyses 

RGB Red Green Blue  

SIFT Scale Invariant Feature Transform 

SMOTE Synthetic Minority Over-Sampling 

Technique 

SVM  Support Vector Machine 

TPR True Positive Rate 

VT VirusTotal 
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Appendix 1: Dataset 
 

VirusTotal provided us with a dataset which contained 347,307 Microsoft Windows binaries 

and JSON files. As described in Chapter 4 paragraph 4.1, we selected samples based on the 

label as provided by Microsoft and we used it as ground truth during training and testing of 

our models. In other words, the label is the name of the ransomware family as it was given 

by a Microsoft antivirus scanner. 

 

An example of a binary and its corresponding JSON file is listed below:  

- 0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768  

- 0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768.json 

 

The JSON file contains the results of the analysis done by 70 antivirus scanners from 

different AV companies on the binary and includes the relevant meta data of the file.  

A formatted output of the JSON file can be found on 

https://www.virustotal.com/gui/file/0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd

53f6a37dc6aa6768/detection 

The sample was detected as malicious and identified by Microsoft as a sample from the 

Cerber ransomware family. With the name (label): Ransom:Win32/Cerber.J. 

 

 

 

 

 

  

https://www.virustotal.com/gui/file/0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768/detection
https://www.virustotal.com/gui/file/0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768/detection
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Appendix 2: Confusion matrices 
 

As shown in the images below the Confusion Matrices of the MobileNetV1 and V2 models. 

 

  



   

 

Master thesis Cyber Security Engineering - The Hague Graduate School 43 

  



   

 

Master thesis Cyber Security Engineering - The Hague Graduate School 44 

Appendix 3: System specifications & repository 
 

For the experiment, a system with the following specifications was used: 

 

• Intel Core i7 8559U Processor (2.7 GHz) 

• 32GB RAM 

• GeForce RTX 2070 8GB  

 

This system used a GPU with 2,304 CUDA cores and 8GB of memory in training the DL 

algorithm. 

The Ubuntu 18.0.5 LTS Linux OS was used. Linux is suitable for our needs because (1) 

malware is used, and we do not want to infect the underlying operating system while 

processing the samples, and (2) the tools used are optimised for this operating system. 

The software libraries used and their versions are included the requirements.txt file accessible 

in a public GitHub repository: https://github.com/azeus404/thesis 

 

The different scripts used in this study are divided into categories as described in the 

approach (Chapter 3) and shown in the image below. Please consult the README.MD file in 

the aforementioned repository. 

 

 
 

The scripts used for the pre-processing and the model evaluation analysis are also available 

as Jupyter Notebooks and were used in Chapter 4 of the study. Finally, a prototype of the 

implemented model, in a detector is included in the aforementioned GitHub repository as 

described in Chapter 4. 

 

 

https://github.com/azeus404/thesis

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Background of the study
	1.2 Problem field analysis
	1.3 Research aim and objectives
	1.4 Central research questions and associated questions
	1.5 Limitations of the study
	1.6 Structure of thesis

	2  Literature review
	2.1 Ransomware detection & identification
	2.1.1 Similarity between families
	2.1.2 Machine Learning
	2.1.3 Summary

	2.2 AI and Deep Learning
	2.2.1 Deep Learning
	2.2.2 Summary

	2.3 Convolutional Neural Networks
	2.3.1 Architecture
	2.3.2 Resource intensive
	2.3.3 Summary

	2.4 Deep Transfer Learning
	2.4.1 Transductive Transfer Learning
	2.4.2 Pre-trained CNN’s
	2.4.3 Models applied in other studies
	2.4.4 Transfer scenarios
	2.4.5 Summary


	3 Proposed approach
	3.1 Pre-processing
	3.2 Transfer learning
	3.3 Evaluation
	3.4 Requirements

	4 Research methodology
	4.1 Design science research
	4.2 Literature review
	4.3 Experiment
	4.3.1 Detector & classifier
	4.3.2 Constraints

	4.4 Data gathering methods
	4.4.1 Malware dataset
	4.4.2 Benign dataset

	4.5 Selection of samples
	4.6 Image distortion
	4.7 Imbalanced distribution of samples
	4.8 Training, validation and testing set
	4.9 Model selection
	4.10 Model Evaluation

	5  Experimental environment & fine-tuning
	5.1 Experimental environment
	5.2 Fine-tuning

	6 Results of the study and analyses
	6.1 Introduction
	6.2 Experimental results
	6.3 Interpretation and discussion

	7 Conclusions and future research
	7.1 Introduction
	7.2 Review of research questions
	7.2.1 Review of the research questions
	7.2.2 Review of the main research question

	7.3 Future research

	8 Discussion and reflections
	8.1 Literature
	8.2 Methodology
	8.3 Outcome

	Glossary
	References
	Appendix 1: Dataset
	Appendix 2: Confusion matrices
	Appendix 3: System specifications & repository

