

Ransomware Detection &
Identification Using AI

by

Leon Wiskie

To obtain the degree of Master of Science at

The Hague Graduate School.

Master thesis Cyber Security Engineering - The Hague Graduate School 1

Ransomware Detection &

Identification Using AI

Master thesis Cyber Security Engineering - The Hague Graduate School 2

This page is intentionally left blank

Master thesis Cyber Security Engineering - The Hague Graduate School 3

Ransomware Detection &

Identification Using AI

STUDENTNUMBER - 18110177

PROGRAM - CYBER SECURITY ENGINEERING

SUPERVISOR- DR. S.C.A PETERS

THE HAGUE GRADUATE SCHOOL

DATE - 11-11-2020

By

Leon Wiskie

To obtain the degree of Master of Science at

The Hague Graduate School.

Master thesis Cyber Security Engineering - The Hague Graduate School 4

This page is intentionally left blank

Master thesis Cyber Security Engineering - The Hague Graduate School 5

The Hague Graduate School

Copyright 2020 Leon Wiskie (leon.wiskie@wiskieit.nl)

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted

in any form or by any means, including photocopying, recording, or other electronic or

mechanical methods, without the prior written permission of the author, except in the case of

brief quotations embodied in critical reviews and certain other non-commercial uses

permitted by copyright law. For permission requests, write to the author.

mailto:leon.wiskie@wiskieit.nl

Master thesis Cyber Security Engineering - The Hague Graduate School 6

Acknowledgements

We gratefully acknowledge the support of VirusTotal for providing the malware samples

used in this research.

Master thesis Cyber Security Engineering - The Hague Graduate School 7

Table of Contents

ACKNOWLEDGEMENTS .. 6

ABSTRACT .. 9

1 INTRODUCTION ... 10

2 LITERATURE REVIEW ... 12

3 PROPOSED APPROACH .. 20

4 RESEARCH METHODOLOGY ... 22

5 EXPERIMENTAL ENVIRONMENT & FINE-TUNING ... 29

6 RESULTS OF THE STUDY AND ANALYSES .. 30

7 CONCLUSIONS AND FUTURE RESEARCH .. 34

8 DISCUSSION AND REFLECTIONS .. 36

GLOSSARY... 37

REFERENCES .. 38

APPENDIX 1: DATASET .. 41

APPENDIX 2: CONFUSION MATRICES .. 42

APPENDIX 3: SYSTEM SPECIFICATIONS & REPOSITORY .. 44

Master thesis Cyber Security Engineering - The Hague Graduate School 8

List of Figures
Figure 1 Images of unrelated benign samples.. 13
Figure 2 Images of related Cerber samples.. 13
Figure 3 High level process of conversion of a binary file to image (Hassan, 2019) 15
Figure 4 Typical Convolution Neural Network (Keras,2020) ... 17
Figure 5 Proposed approach... 20
Figure 6 Binary to pixel conversion... 20
Figure 7 Data processing ... 23
Figure 8 Malware in ransomware research dataset .. 24
Figure 9 Distribution of image sizes by samples in the final dataset....................................... 26
Figure 10 Distribution of families – imbalance dataset ... 26
Figure 11 Example CNN feature extractor and classifier (Google,2020). 29
Figure 12 Classification reports (top MobileNet and bottom MobileNetV2).......................... 32

List of Tables
Table 1 Models found in literature... 18
Table 2 Ransomware families .. 25
Table 3 Training, validation & testing split ... 27
Table 4 Implemented models and parameters ... 30
Table 5 Model performance ... 31
Table 6 Comparing model results on test dataset .. 31

Master thesis Cyber Security Engineering - The Hague Graduate School 9

Abstract

Malware is a constantly evolving and rising threat, especially ransomware, a form of

malware. The rise of ransomware as a service platform adds to this surge, and malware

researchers need options to swiftly and reliably identify a family of ransomware to protect the

data of individuals and vital infrastructures.

In this study we provide an image-based detection and classification method that can aid

researchers in identifying the origins of ransomware by comparing it to known ransomware

families. We aimed to reach a high level of accuracy and a low false positive rate on a given

ransomware sample using a limited-size training dataset and COTS hardware.

We used a dataset of 347,307 Windows executable malware samples obtained from

VirusTotal (VT). These samples were collected by VT between 2017 and 2020. From this

dataset we selected samples positively identified as known ransomware.

We applied a novel AI-driven approach to classify ransomware based on an image

representation of the binary file. This approach has been used by security practitioners and

academics on malware in general but not on particular types of malware like ransomware.

We used a naïve approach to selecting the best-performing convolutional neural networks

based on 16 of the available applications in Keras, a Python API for the TensorFlow

opensource machine learning platform. These applications were pre-trained on the ImageNet

dataset of natural images.

The proposed method achieves above 90% accuracy and a high recall rate for a high

probability of detection of ransomware based on three channel (RGB) images. The best-

scoring models on our dataset were MobileNet and MobileNetV2.

Keywords: Ransomware, Computer vision, Deep learning, CNN, Machine learning

Master thesis Cyber Security Engineering - The Hague Graduate School 10

1 Introduction

This chapter introduces the background to the study, defines the problem, and articulates the

research questions.

1.1 Background of the study
Ransomware is a form of malware (Hassan, 2019) that is increasingly used by criminals to

extort large sums of money from individuals and especially companies. Worldwide, it is seen

by researchers as a major threat in an increasingly digitizing society (Kaspersky, 2020;

McAfee, 2019; Trend Micro, 2020).

Recently a large university in the Netherlands fell victim to a ransomware infection that

resulted in the unavailability of IT systems for students and employees and caused great

social unrest (“Maastricht University paid ransomware attackers ransom,” 2020). In 2017,

WannaCry had a disruptive effect on the non-virtual world, including the operations of the

British National Health Service (NHS); people in the United Kingdom may have died as a

result of the unavailability of data necessary to provide care (Ghafur et al., 2019).

1.2 Problem field analysis
Various researchers (Chen, 2018; Ganapathi and Shanmugapriya, 2020) argue that artificial

intelligence (AI) can make a positive contribution in protecting society against the increasing

threat posed by ransomware. We consider ransomware detection and family identification as

two separate tasks, following the classification of malware in the literature. We define

“families” as instances of ransomware with the same origin or a likely common origin and a

strong similarity in code.

1.3 Research aim and objectives
The purpose of this research is to (1) contribute to existing knowledge in the field of

identifying unknown ransomware using AI and (2) propose a practical model that can be used

by malware analysts when detecting and initially identifying ransomware. We aim to achieve

a high level of accuracy and a low false positive rate in identifying ransomware and

classifying a given sample into a known ransomware family.

1.4 Central research questions and associated questions
To reach the aforementioned objectives, we have formulated research questions. The main

research question of this study is:

How can deep learning be used to detect and identify ransomware?

To answer the main research question, two theoretical sub-questions and one empirical sub-

question have been formulated:

1. What are the current methods for detecting and identifying ransomware?

2. What is deep learning and deep transfer learning?

3.

a. How can a pre-trained model be implemented for detecting and identifying

ransomware?

b. How effective is this implemented model?

Master thesis Cyber Security Engineering - The Hague Graduate School 11

1.5 Limitations of the study
The scope of this research is limited to developing a prototype of a detector. The

implementation of the detector and the measures that may be taken to limit the effects and

consequences of ransomware are beyond the scope of this study. This study is focused on

detecting and classifying Microsoft Windows–based malware because the Windows

operating system is one of the most common targets of ransomware (Kaspersky, 2020;

McAfee, 2019; Trend Micro, 2020).

1.6 Structure of thesis
This report begins by summarizing current literature on malware analysis and similarity

analysis among malware and ransomware binaries in Chapter 2; from this past research, the

research gap for present study is identified. In Chapter 3 we introduce our approach to bridge

the gap. Then in Chapter 4 we discuss the method for scientific research used on this subject.

In Chapter 5 we describe the experimental environment and the fine-tuning of the

convolutional neural networks (CNNs) before they can be applied on our use case. In Chapter

6 we evaluate models for detection and identification of ransomware using image-based

analysis, and a novel method based on deep transfer learning and MobileNet CNNs to answer

the main research question. In Chapter 7 the conclusion of the thesis is summarized and

answers to the research questions are formulated. Finally, in Chapter 8, we discuss the

literature and methodology used in our study and the overall outcome. This document has

three appendices; the first contains an explanation of the files in the dataset used in our

research, the second contains the confusion matrices of the MobileNet models applied on the

test data and the last contains a description of the system used during the experiments, an

overview of the software and scripts used and the link to the data repository.

Master thesis Cyber Security Engineering - The Hague Graduate School 12

2 Literature review

In this chapter, a literature review is conducted covering the key concepts from the research

questions formulated in Chapter 1 and discussing their relevance to this research.

2.1 Ransomware detection & identification
In this study, ransomware is defined according to the description used by the Dutch Nation

Cyber Security Center (NCSC): Ransomware is software that encrypts computer files so that

users no longer have access to them. Only after payment of the ransom will data or

documents be made accessible again (MITRE, 2020; NCSC, 2020).

However, there are no guarantees that files will actually be accessible again after

payment. Systems are infected with ransomware through files opened by an end user via

email or by visiting infected websites. The infection and further spread occur because the

malware exploits vulnerabilities in the operating system, as the well-known WannaCry

ransomware did (Talos, 2017). Malicious actors can deploy ransomware against many

different targets. Any system that contains valuable data can be an interesting target, and

attackers often demand more ransom from large companies, government agencies or sensitive

data (Loman, 2019).

Vendors and developers of anti-malware products use detection methods such as

signature, heuristic or behaviour-based detection (Amro and Alkhalifah, 2015; Sikorski and

Honig, 2012). In practice, these methods often turn out to be insufficiently effective to detect

new ransomware or variants of existing ransomware. Gilbert et al. (2019) have conducted an

extensive literature review of the existing methods of ransomware detection.

2.1.1 Similarity between families

Looking for similarity between files-based entropy and hashing for detection is a well-known

technique applied by all AV vendors. However, the rapid increase in malware makes this

kind of signatures-matching process decreasingly efficient and poorly scalable (Chen, 2018).

Developers of malware makes changes to it so that the signatures change, aiding in evading

detection.

Researchers (Ganapathi and Shanmugapriya, 2020; Kaspersky, n.d.; Nataraj et al., 2011)

argue that different families have functional similarities that can be found in decompiled

code, making it possible, in principal, to detect them based on the similar features across a

family. Algorithms can be taught to recognize the similarities when binaries of malware are

converted into images, and we predict this can be done with ransomware, given that it is a

type of malware and that families of ransomware also have similarities in code. Figure 1

shows samples of benign Microsoft Windows executables that are not related.

Master thesis Cyber Security Engineering - The Hague Graduate School 13

Figure 1 Images of unrelated benign samples

Figure 2 shows images of samples of the Cerber ransomware family.

Figure 2 Images of related Cerber samples

2.1.2 Machine Learning

Several studies have shown that the malware responsible for file encryption (referred to in

this study as ransomware) can be reliably detected and identified using machine learning

(ML) algorithms and techniques (Al-rimy et al., 2018; Nataraj et al., 2011).

There are two aspects that make detecting ransomware with ML and further investigation

relevant. First, ransomware is becoming more sophisticated and, due to the application by its

creators of better anti-detection features, more difficult to detect (Dargahi et al., 2019).

Second, ransomware is evolving so fast that it often cannot be identified reliably using

current detection techniques. Both factors ensure that malware developers can easily bypass

detection and thus increase the chance of infection and damage.

A reliable method for analysing ransomware is static analysis, in which a file is converted

into machine code and then thoroughly analysed by a human for known patterns. This

requires specialist knowledge from an analyst and is considered to be very time-consuming

(Chen, 2018; Nataraj et al., 2011). Machine learning can support analysts in classifying a file

as benign or malware (Al-rimy et al., 2018, p.; Johns, 2017).

Nevertheless, researchers state that there are limitations to the use of traditional ML

algorithms for this classification application, of which feature engineering is the most

important.

Master thesis Cyber Security Engineering - The Hague Graduate School 14

Machine learning algorithms (MLAs) rely heavily on feature engineering, feature selection

and feature representation techniques that require an extensive domain-level knowledge

(Vinayakumar et al., 2019). We derived our definition of feature engineering from the works

of Kubat (2017) and Sharma et al. (2019):

“Feature engineering is the process of looking at relevant features in a dataset that can be

used by an ML algorithm”

We define traditional machine learning algorithms based on linear regression like support

vector machines (SVMs) and K-nearest neighbour (K-NN) algorithems as shallow learning.

In general, there are two types of application of ML, and the literature indicates that these can

assist analysts in identifying malware (Vu et al., 2019):

1. Feature-based on machine code and/or behaviour (Kolosnjaji et al., 2017);

2. Imaged-based without feature engineering (Han et al., 2013);

In this study, the second method, introduced by Han et al. (2013), is further investigated. It is

chosen, firstly, because it can be used to detect malware reliably and then identify it without

having to convert the software to machine code (disassembly) or run it. Not having to interact

with the binaries possess advantages because it (1) limits the chance of infecting the system

used for analysis and (2) reduces the overall complexity of the analysis process. Secondly, it

has proven to be robust enough against the aforementioned anti-analysis methods used by

ransomware developers (Al-rimy et al., 2018; Vu et al., 2019). Examples of these anti-

analysis methods are obfuscation, anti-disassembly, anti-debugging and anti-virtual machine,

all of which prevent analysis as well as traditional feature-based identification of malware

(Sikorski and Honig, 2012).

2.1.3 Summary

There are several applications deploying ML-based malware detection techniques that may

be useful in ransomware detection. Of these, image-based detection appears to be the most

promising, as it may offer a solution to the problem described in the introduction of this

study.

Master thesis Cyber Security Engineering - The Hague Graduate School 15

2.2 AI and Deep Learning

Machine learning, introduced in the previous section, is a sub-domain of artificial intelligence

(AI). Artificial intelligence is a research field that has existed since the 1950s, and its most

recent evolution is deep learning (DL) (Müller and Bostrom, 2016).

2.2.1 Deep Learning

Deep learning is sometimes referred to in (popular) science as AI. Artificial intelligence is

applied in various domains, including information security (Sewak et al., 2018). The

following definition of DL is used in this study:

“A class of machine learning techniques that exploit many layers of non-linear information

processing for supervised or unsupervised feature extraction and transformation, and for

pattern analysis and classification.” (Deng and Yu, 2013) (p.199)

Deep learning makes use of deep neural networks. This form of neural networks (NN) is

based on the functioning of the neural networks of the human brain (Krohn et al., 2020). With

DL, it is possible to develop algorithms that can be applied to solve (multi-) classification

problems, such as distinguishing between good and malware and distinguishing different

malware families without having to manually apply feature engineering in advance, which, as

previously mentioned, is necessary for traditional ML algorithms (Hardy et al., 2016; Krohn

et al., 2020).

Several existing studies classify malware based on an image. These methods are derived from

computer vision (CV), which “looks” at an image of a binary (Vu et al., 2019; Yan et al.,

2018) and the textures and patterns it contains. An example of this process is shown in Figure

3, below. Nataraja et al. (2011) use this same method, except in a traditional MLA, they

apply an SVM algorithm to a grayscale-converted malware binaries dataset.

Figure 3 High level process of conversion of a binary file to image (Hassan, 2019)

2.2.2 Summary

Artificial intelligence in the form of deep learning is most often used to analyse malware.

This application could also be useful to achieve the aim and objectives of the present study,

given the hypothesis that ransomware families have similar properties in the form of patterns

that can be recognized by an algorithm in a pixel representation of a binary file. This

hypothesis has in any case been frequently confirmed by researchers for machine code

(Sharma et al., 2019).

2. RELATED WORK

Several tools such as text editors and binary editors can both

visualize and manipulate binary data. Of late, there have been

several GUI-based tools which facilitate comparison of files.

However, there has been limited research in visualizing malware. In

[3] Yoo used self organizing maps to detect and visualize malicious

code inside an executable. In [4] Quist and Liebrock develop a

visualization framework for reverse engineering. They identify

functional areas and de-obfuscate through a node-link visualization

where nodes represent the address and links represent state

transitions between addresses. In [5] Trinius et al. display the

distributions of operations using treemaps and the sequence of

operations using thread graphs. In [6] Goodall et al. develop a visual

analysis environment that can aid software developers to understand

the code better. They also show how vulnerabilities within software

can be visualized in their environment.

While there hasn’t been much work on viewing malware as digital

images, Conti et al. [8,9] visualized raw binary data of primitive

binary fragments such as text, C++ data structure, image data, audio

data as images. In [7] Conti et al. show that they can automatically

classify the different binary fragments using statistical features.

However, their analysis is only concerned with identifying primitive

binary fragments and not malware. This work presents a similar

approach by representing malware as grayscale images.

Several techniques have been proposed for clustering and

classification of malware. These include both static analysis [13-19]

as well as dynamic analysis [20-24]. We will review papers that

specifically deal with classification of malware. In [24] Rieck et al.

used features based on behavioral analysis of malware to classify

them according to their families. They used a labeled dataset of

10,072 malware samples labeled by an anti-virus software and

divide the dataset into 14 malware families. Then they monitored

the behavior of all the malware in a sandbox environment which

generated a behavioral report. From the report, they generate a

feature vector for every malware based on the frequency of some

specific strings in the report. A Support Vector Machine is used for

training and testing the feature on the 14 families and they report an

average classification accuracy of 88%. In contrast to [24], Tian et

al [16] use a very simple feature, the length of a program, to classify

7 different types of Trojans and obtain an average accuracy of 88%.

However, their analysis was only done on 721 files. In [17,18] the

same authors improve their above technique by using printable

string information from the malware. They evaluated their method

on 1521 malware consisting of 13 families and reported a

classification accuracy of 98.8%. In [20], Park et al. classify

malware based on detecting the maximal common sub graph in a

behavioral graph. They demonstrate their results on a set of 300

malware in 6 families.

With respect to related works, our classification method does not

require any disassembly or execution of the actual malware code.

Moreover, the image textures used for classification provide more

resilient features in terms of obfuscation techniques, and in

particular for encryption. Finally, we evaluated our approach on a

larger dataset consisting in 25 families within a malware corpus of

9,458 malware. The evaluation results show that our method offers

similar precision at a lower computational cost.

3. VISUALIZATION

A given malware binary is read as a vector of 8 bit unsigned

integers and then organized into a 2D array. This can be visualized

as a gray scale image in the range [0,255] (0: black, 255: white).

The width of the image is fixed and the height is allowed to vary

depending on the file size (Fig. 1). Tab. 1 gives some recommended

image widths for different file sizes based on empirical

observations.

 Fig.1 Visualizing Malware as an Image

Fig. 2 shows an example image of a common Trojan downloader,

Dontovo A, which downlods and executes arbitrary files [26]. It is

interesting to note that in many cases, as in Fig. 2, different sections

(binary fragments) of the malware exhibit distinctive image

textures. A detailed taxonomy of various primitive binary fragments

and their visualization as grayscale images can be found in [9].

Fig. 2 Various Sections of Trojan: Dontovo.A

The .text section contains the executable code. From the figure, we

can see that the first part of the .text section contains the code

whose texture is fine grained. The rest is filled with zeros (black)

indicating zero padding at the end of this section. The following

.data section contains both uninitialized code (black patch) and

initialized data (fine grained texture). The final section is the .rsrc

section which contains all the resources of the module. These may

also include icons that an application may use.

Binary to
8 bit

vector

8 Bit vector to
Grayscale

Image

011100110101
100101011010
10100001..

Malware Binary

.text

.rdata

.data

.rsrc

Master thesis Cyber Security Engineering - The Hague Graduate School 16

2.3 Convolutional Neural Networks

There are DL architectures that can be used for various applications (Hosseini et al., 2020). A

convolutional neural network is an NN architecture that is deployed at DL in various

domains, the best known of which is photo or image classification (Cawsey, 1998;

Krizhevsky et al., 2012). A CNN is therefore frequently used in the aforementioned CV

research domain (Baltrušaitis et al., 2018). The CNN architecture is based on the functioning

of the human visual cortex (Krohn et al., 2020).

Deep learning algorithms with a CNN architecture are mentioned in several studies (Hardy et

al., 2016; Vu et al., 2019; Yan et al., 2018) as a reliable application of ML to distinguish

malware from benign software using feature engineering techniques such as image gists and

Scale Invariant Feature Transform (SIFT) (Xie et al., 2017).

Because these types of NN are primarily intended to recognize patterns in data using the

aforementioned techniques, the NN “learns” by itself the features of the input data using a

technique called back propagation (Géron, 2019; Krohn et al., 2020).

In 2017, research was conducted by the FireEye company into CNN architectures that are

used in a detection system. This method was found to be suitable for classifying malware

packaged in Microsoft Windows Portable Executable (PE) files. In the FireEye study (Coull

and Gardner, 2019), these files, before they were presented to the detector, were converted to

grayscale representations as described in the previous section.

The method used was a form of supervised learning in which a person had pre-labelled what

in this case consisted of malware and benign software (Kubat, 2017). FireEye’s research

looked at which features were identified by the ML model as interesting and which a

malware analyst would find relevant in traditional static analysis. The scores achieved by

manual classification and by the algorithm were compared. The accuracy of this model was

98%, and a dataset of 3 million benign and 3 million malware samples was used.

Master thesis Cyber Security Engineering - The Hague Graduate School 17

2.3.1 Architecture

As described earlier, NNs have an architecture. A CNN is a network architecture with several

layers between the input and the output layer; these are called hidden layers. An architectural

drawing is shown in Figure 5, below. In general, the hidden layers consists of convolution,

pooling and fully connected layers.

Figure 4 Typical Convolution Neural Network (Keras,2020)

These hidden layers are responsible for feature extraction, in which the features together form

a part or a whole pattern that can be recognized by the algorithm in order to classify a sample

as benign or malware (Géron, 2019; Krohn et al., 2020).

Deeper neural networks, in general, prove to have better accuracy then shallow networks, as

Simonyan and Zisserman (Simonyan and Zisserman, 2015) and Bohida et al. (Bhodia et al.,

2019) have demonstrated. Bohida et al. compared shallow K-NN models with deep ResNet

models and proved deep neural networks (DNN) performed better due to the fact there are

more features to extract resulting in more parameters to train. The downside of DNN’s is the

high need of training samples and CPU/GPU resources to train them effectively.

2.3.2 Resource intensive

Deep learning is resource intensive, which means that sufficient (1) training data and (2)

hardware in the form of computing power (CPU / GPU) and memory (RAM) must be

available to train a model sufficiently (Claufield, 2009; Rawat and Wang, 2017; Vu et al.,

2019).

As described above, FireEye used 3 million malware and benign samples in their study to

train their model; however, marshalling this amount of training data can be a challenge for

independent researchers.

2.3.3 Summary

Deep CNN architectures (DCNN) could contribute to the solution to the problem of this

study. Solutions are provided to the limitations in its usability, including the following:

- Deeper networks tend to have better accuracy;

- Large amounts of data are needed to train a CNN in general;

- Training a CNNs takes significant time, and without the right hardware it takes hours

or even days.

Master thesis Cyber Security Engineering - The Hague Graduate School 18

2.4 Deep Transfer Learning

2.4.1 Transductive Transfer Learning

Pan and Yan (Pan and Yang, 2010) describe the different methods of deep transfer learning

(DTL). The transductive transfer learning (TTL) method may offer a solution to the

aforementioned limitations. There are similarities between the source and target tasks, but the

corresponding domains are different. The source domain has a vast amount of labelled data,

while the target domain, in this case ransomware, still has relatively little.

The transfer of parameters of the neurons is in this study considered TTL. These parameters

are the biases and weights that can be used in ransomware classification to (1) shorten

training time and (2) increase the reliability of an algorithm (Tan et al., 2018).

2.4.2 Pre-trained CNN’s

The application of TTL is therefore the use of a pre-trained CNN, also referred to as a model,

on another application domain. Several pre-trained CNN models are publicly available. These

are trained on images from the ImageNet dataset, which contains more than 14 million

labelled natural images in 1000 categories (ImageNet Project, n.d.).

There are CNNs implemented in publicly available deep learning software libraries such as

TensorFlow (https://www.tensorflow.org) and Keras (https://keras.io).

2.4.3 Models applied in other studies

Table 1 shows the different deep models and their accuracy as described in (scientific)

literature and the results of applying transfer learning on a malware dataset.

We can conclude that (1) the models used are very deep, (2) the weights and biases of the

aforementioned ImageNet dataset were used and (3) the binaries in the dataset were

converted into grayscale images. Furthermore, all but one study used the same malware

datasets.

Table 1 Models found in literature

Model Grayscale Used in

Study

Accuracy

(%)

Dataset

Xception Y (Lo et al.,

2019)

99.03 Malimg (9339 samples of malwares

belonging to 25 malware types) &

Microsoft (10868 samples of malware

belonging to 9 malware types)

VGG16 Y (Kalash et al.,

2018)

98.52 Malimg (9339 samples of malwares

belonging to 25 malware types) &

Microsoft (10868 samples of malware

belonging to 9 malware types)

ResNet50 Y (Khan et al.,

2017)

87.98 Microsoft (10868 samples of malware

belonging to 9 malware types)

InceptionV3 Y (Chen et al.,

2019)

90.0 Other (10,849 samples of malware and

11,153 benign samples)

Ensemble of

InceptionV1

Y (Chen, 2018) 99.07 Other (584,606 samples of malware and

197,604 benign samples)

https://www.tensorflow.org/
https://keras.io/

Master thesis Cyber Security Engineering - The Hague Graduate School 19

2.4.4 Transfer scenarios

There are various scenarios, described by Tan et al. (Tan et al., 2018), in which to use the

pre-trained models, including (1) using the features from the model, (2) fine-tuning the model

if the application domain is close to the original domain or (3) using a pre-trained model.

2.4.5 Summary

Deploying DTL by implementing a pre-trained model can significantly reduce the training

data needed, reduce the overall training time and increase the reliability of the detector. The

feature extraction scenario and fine-tuning could be a suitable approach because it is seen by

several researchers as a solution for reducing the time required to train a model. Pre-trained

models are non-existent in this line of research.

Chen (2018) proposes an approach for applying DTL in the classification of malware binary

into two classes (benign or malware). This research is the main inspiration behind our

approach. Chen offers the most detailed description of the approach that we found in the

literature.

Master thesis Cyber Security Engineering - The Hague Graduate School 20

3 Proposed approach

We adapted the approach of Chen (2018), as shown in Figure 5, to multi-classification on

our ransomware dataset. We use Figure 5 as a conceptual model throughout this chapter to

clarify the research in conjunction with our approach.

Figure 5 Proposed approach

To add to the validity of the three main phases of this approach, it is believed to be the

current state of the art and best practice in (1) data science and (2) in ML projects in general.

3.1 Pre-processing
During pre-processing, the first phase shown in Figure 5, we convert a ransomware binary to

an m x m, three channel matrix (RGB). The process and the result are shown in Figure 6. We

apply a mean RGB subtraction to normalize the input data for the CNN. For that purpose, we

need to calculate the mean value across one whole sample and subtract it from each number

in it. In the Keras API we use the sample-wise center option for this purpose.

Our method differs from the ones found in the literature because we use RGB images instead

of the grayscale images used by Nataraja et al (2011). Second, we deviate from his method

by not converting binaries in opcode before converting them to images. In this way we avoid

(1) the need to identify the packager used and (2) unpacking the binaries, which is an error-

prone and time-consuming process, as stated by Gibert et al. (2020).

Figure 6 Binary to pixel conversion

We reshape and resize the mostly rectangular images (m x n) of pixel representation of a

binary to the default-size square shape (m x m) of a CNN input tensor, following the CNN

implementation guides provided by Keras.

3.2 Transfer learning
In the transfer learning phase of the process illustrated in Figure 5, we use a pre-trained CNN

on the ImageNet dataset of natural images (ImageNet, n.d).

Ransomware
binary

Pixel
conversion

Reshape &
resize

Use pre-
trained DNN
for natural

images

Retrain a
portion of the
last few layers

Pre-processing

Transfer Learning

Validation and
classification

Evaluation

Master thesis Cyber Security Engineering - The Hague Graduate School 21

As stated in the literature review, it is well known that deep neural network topologies lead to

better accuracy. However, many of the models have never been used to classify malware or

ransomware in the published literature.

We add layers for additional feature extraction and replace the original classification layer of

the CNN with a new dense layer of 8 classes with a Softmax activation function. This layer is

used to classify a sample.

In the transfer learning phase shown in Figure 5, we evaluate the different pre-trained CNNs

on the dataset and train the last few layers we added to the CNN. This approach is called fine-

tuning (Keras, 2020) a model so it can be applied on the dataset and problem or use case of

this study.

3.3 Evaluation
We adopt a naïve approach in selecting the best performing CNN implementation by iterating

over the different pre-trained and fine-tuned models. Finally, in the evaluation phase shown

in Figure 5, we evaluate the models’ performance, searching for the best results to meet the

stated requirements.

3.4 Requirements
We derived four requirements for our solution (the artifact) from literature and best practices

in the security practitioner’s community. The model used for the detector must achieve at

least 90% accuracy, a low false positive rate (FPR) and the lowest possible false negative

rate (FNR). This is achieved in similar studies (Chen, 2018; Kolosnjaji et al., 2017). The

detector is considered reliable and useful if it

1. can classify unknown binaries as ransomware;

2. can classify ransomware in different families;

3. can be trained using a limited amount of resources (e.g. number of samples).

Master thesis Cyber Security Engineering - The Hague Graduate School 22

4 Research methodology
In this chapter the research method is explained, beginning with design science research

(DSR), consisting of the literature review and the description of the empirical part of the

research.

4.1 Design science research
In this study, the DSR method is applied to develop a practical solution to the problem

described in Chapter 1 and is scientifically validated and evaluated. This determines whether

the solution can also be used in the context of the research (Wieringa, 2014). This method of

research fits in with the problem defined in the proposed study because it tries to develop an

artifact that contributes to or is a solution to a problem that occurs in practice: in this case,

detecting and identifying ransomware with limited use of resources.

4.2 Literature review
A literature review was carried out in the form of a systematic literature study to form a

theoretical framework and thus be able to answer the theoretical sub-questions. The insights

obtained through this process are necessary for drawing up the requirements and ultimately

the design of the artifact: a prototype of a ransomware detector and classifier.

The literature review was conducted using sources available through the library of The Hague

University of Applied Sciences. A search was made for various keywords from the problem

definition and combinations of those keywords, and a pre-selection was made within the

literature found. For example, literature was chosen that is no more than five years old

because the detection of ransomware and AI is a field that is developing very quickly. In

addition, however, a number of fundamental research papers were consulted that are more

than five years old.

4.3 Experiment
In the empirical part of the research, an experiment was carried out in which the artifact

(detector) was tested, evaluated and validated for usability in a practical situation.

A lab environment was configured to (1) pre-process benign and ransomware samples and

divide them into the necessary datasets to train, validate and test the model; (2) train the

model for a longer period of time (e.g. a number of hours); and (3) perform the experiment

(validating and testing the detector). This was done in several iterations in order to improve

the detector and thereby increase its reliability, accuracy and usability.

4.3.1 Detector & classifier

In this study we define a detection system as an output of a single value 𝑦 = 𝑓(x), in the

range 0 to 1, which indicates the maliciousness of the executable.

Furthermore, a classification system outputs the probability of a given executable to each

output class or family, 𝑦 ∈ ℝ𝑛, where n indicates the number of different ransomware

families (Gibert et al., 2020).

The detector is developed in the programming language Python (https://www.python.org/)

and uses the TensorFlow machine learning framework (https://www.tensorflow.org/)

combined with Keras as TensorFlow API also written in Python (https://keras.io/) and further

supported by a number of different supporting software libraries. The models implemented in

the Keras API will be evaluated during the experiment.

https://www.tensorflow.org/
https://keras.io/

Master thesis Cyber Security Engineering - The Hague Graduate School 23

This software stack was selected (1) because it was found in many sources in the literature

search and (2) because the researcher has considerable experience with the programming

language mentioned. Together, these form an open source framework that is used for the

development of the detector and classifier. Using this opensource software stack contributes

to the transparency of this research and the usability of the solution.

4.3.2 Constraints

Training a CNN is generally faster if systems are equipped with multiple graphics cards

(GPUs) or Tensor Processing Units (TPUs); however, these systems are very expensive and

not available for this research. Therefore, the speed of training and classification is not a

decisive factor in assessing the results of the study. The most important limitation is in

obtaining sufficient samples to compile an adequate ransomware dataset. Extensive malware

datasets containing ransomware are generally not shared by anti-malware vendors with

independent researchers because they form part of the business model used by these

organisations; therefore, researchers must collect samples themselves. This method is used in

several existing studies (Al-rimy et al., 2018).

4.4 Data gathering methods
For this research a dataset with malware was made available to us by VirusTotal (VT). VT is

a community-driven security platform and is recognised in academia and by practitioners as

an authority on malware analysis. The selected models, as described in the approach, were

trained and tested on samples from this dataset.

We conducted a systematic analysis with the use of Exploratory Data Analysis (EDA)

(Guthrie, 2020) techniques on the received samples. With EDA we aim to (1) gain insights

into the distribution of the families versus samples size and (2) determine the data quality

(e.g. correct labelling) and integrity of the files supplied.

To make the results of the research as representative as possible, samples of recent

ransomware and a number of well-known ransomware families as described by Hassan

(Hassan, 2019) were part of the selection. We selected the ransomware based on the family

name. This name was human-readable and set by Microsoft as a label, which is available in

our dataset. This is considered as our ground truth.

Figure 7 Data processing

The dataset for validation was used, as shown in Figure 7, to measure validation accuracy,

which indicates the extent to which the model generalizes, meaning it does not under- or

overfit during training.

Malware
binary

Pixel
conversion

Ransomware
selection

Pre-processing

Training 80%

Datasets

Validation 20%

Test 10%
Sample selectionSample gathering

Master thesis Cyber Security Engineering - The Hague Graduate School 24

The scripts and configuration files of the lab environment are stored in a GitHub repository

(https://github.com/azeus404) which is publicly accessible so that the steps used during the

data pre-processing and experimental part of the research can be reproduced. The dataset has

been archived and can be made available for peer-review. Given its size (around 320 GB) it

cannot be uploaded to GitHub. More importantly, the legal limitations set by VT prevent us

from further distributing this dataset. Due to these restrictions, it cannot be made available in

the aforementioned repository.

4.4.1 Malware dataset

This dataset contained 347,307 malware samples with labels from multiple AV suppliers

recorded in the JSON file accompanying each sample. These samples were collected between

2017 and 2020. From this dataset we selected the samples based the malware families as they

were named by Microsoft and used this label as our ground truth. This resulted in a total of

282,650 unique samples consisting out of 10 types of malware. Appendix 1: Dataset,

provides an in-depth explanation of contents of the aforementioned JSON file and an

example. The distribution of malware types and the number of samples present in the VT

dataset are shown in Figure 8.

Figure 8 Malware in ransomware research dataset

4.4.2 Benign dataset

We added benign samples to the ransomware dataset, as in the study by FireEye (Coull and

Gardner, 2019), so the classifier could identify ransomware or benign software. These samples

were collected from executables from a clean-installed version of the Microsoft Windows 10

operating system. This benign dataset contains 900 unique samples and was added to the pre-

processed VT dataset, in this study designated and referred to as the ransomware research

dataset (RRD).

4.5 Selection of samples
We decided to use the Microsoft’s classification label as ground truth, because here the

names of the ransomware families in the dataset are easily identifiable. The dataset used by

Nataraja et al. (2011) was also based on the Microsoft labels as ground truth. The MalImg

dataset (Ronen et al., 2018), derivative of the Nataraja dataset, is also used in many of the

https://github.com/azeus404

Master thesis Cyber Security Engineering - The Hague Graduate School 25

studies mentioned in the literature review. In total there are 53 unique ransomware families

present in the VT dataset.

A selection of the ransomware families was taken from the dataset and ransomware, and

families with fewer than 50 samples were excluded from the study, as they would contain

insufficient data to make a training, validation and test set.

Table 2 shows the ransomware families (as detected and labelled by Microsoft) that were

selected after processing the VT dataset. After some data cleansing steps, the dataset

contained 7,042 samples ready to be pre-processed. The data cleansing activities consisted of

removing duplicate samples and correcting spelling mistakes in the labels. We also added

900 benign samples as previously described.

Table 2 Ransomware families

Family name Number of Samples

ransom:win32/tescrypt 3,412

ransom:win32/gandcrab 1,276

ransom:win32/crowti 618

ransom:win32/locky 600

ransom:win32/cerber 548

ransom:win32/genasom 243

ransom:win32/wannacrypt 138

ransom:win32/enestaller 98

ransom:win32/milicry 57

ransom:win32/haperlock 52

Total 7,042

4.6 Image distortion
Most of the CNNs trained on ImageNet dataset have a default input size, called an input

tensor. The default sizes were retrieved from the documentation of the Keras API (Keras,

2020):

• 224 x 224;

• 299 x 299;

• 311 x 311.

This means that if the images in the training set are smaller or of a different shape, they will

be distorted if they are resized and reshaped to the default input tensor size. Too much

distortion has a negative impact on the accuracy of the model, as noted by Chen (2018).

Therefore, smaller images were disregarded in the training of the models.

The distribution of image size over the selected ransomware is presented in Figure 9, which

shows that the majority of images have a width of 384 pixels and a height of 342 pixels.

Image size is regarded in the literature (Chen, 2018; Gibert et al., 2020) as an important

hyperparameter for a model. We selected images with a minimum size of 112 x 112 to train

our images to reach an optimum number of samples and minimize the effects of distortion.

After this final selection, the total dataset (RDD) contained 6,310 (n = 6,310) samples.

Master thesis Cyber Security Engineering - The Hague Graduate School 26

Figure 9 Distribution of image sizes by samples in the final dataset.

4.7 Imbalanced distribution of samples
Imbalanced datasets in general are a common phenomenon in all reviewed studies. We

identified an imbalance of 36:1 in the number of samples per class. It was necessary to

average out the differences between the majority (Tescrypt a.k.a Teslacrypt) and the minority

class (Wannacrypt a.k.a Wannacry) and take measures to counter this imbalance while

training a model because imbalanced datasets often results in a bias to the majority class and

make the model less useful (Gibert et al., 2020). The imbalance in our dataset is shown in

Figure 10.

Figure 10 Distribution of families – imbalance dataset

Master thesis Cyber Security Engineering - The Hague Graduate School 27

The Python software libraries used in this study have their own implementations based on

class weight functions. This function adds weights to classes, which causes the model to “pay

more attention” to examples from an under-represented class.

We used one of the Scikit-learn (Sklearn) built-in methods to account for the imbalance and

implemented it in code. Other methods, such as under- or oversampling, image augmentation

and SMOTE (Yue, 2017), were not viable solutions for our use case because we use images

of byte representations of binaries and not natural images (of cars or dogs, e.g.), which can be

flipped horizontally to count as a new training sample.

4.8 Training, validation and testing set
We partitioned the RRD into a training set (90%) and a testing set (10%). This split ratio is

common in ML-related studies and practical implementations when using a limited number

of samples (Géron, 2019). We use a method of stratified sample selection to retrieve a 10%

selection of samples from processed dataset; this data was set aside to be used for final

evaluating (testing) the overall performance of the model. The remaining 90% of data was

randomly split again in an 80% and 20% partition during the initialisation of the model and

was used for training and validation of the model. The final partitioning and the number of

samples in the aforementioned datasets are shown in Table 3.

Table 3 Training, validation & testing split

Dataset Number of samples (images)

Training 4,547

Validation 1,132

Testing 631
Total 6,310

4.9 Model selection
In this study we implemented different models found in the literature and added the models

found on the Keras webpage. As stated in the approach, we used a naïve method by iterating

over viable solutions and checking whether they met the requirements. The best solutions,

based on their performance, were selected. This method and approach are part of the design

cycle common in DSR, the overall research method used in our study (Wieringa, 2014).

Master thesis Cyber Security Engineering - The Hague Graduate School 28

4.10 Model Evaluation
In this study we use different methods to evaluate the models’ performance in classification.

These methods were derived from those we found in the literature to aid reviewers in

comparing and validating our research (Wieringa, 2014). We use a confusion matrix, recall,

precision, F1 score and accuracy. The equations and a short description are given below.

Confusion matrix: A method used to evaluate the model’s performance. In the matrix

classes are scored based on the instances of correct classification for a given class (Géron,

2019).

Recall: The ratio of positive correctly identified samples by the classifier to what the actual

label or ground truth was (Géron, 2019). A perfect recall or sensitivity score equals 1.0 and

implies no false negatives or FNR equal to 0.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision: The ratio of correctly predicted positive observations to the total predicted

positive observations (Géron, 2019). A perfect precision score equals 1.0 and implies no false

positives or FPR is equal to 0.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F1 score: This score is a combination of the aforementioned metrics recall and precision and

is used to compare classifiers or models (Géron, 2019).

𝐹1 =
𝑇𝑃

𝑇𝑃 +
𝐹𝑁 + 𝐹𝑃

2

Accuracy: Accuracy is the number of correct predictions out of the total examples (Géron,

2019).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

TP = True Positive

FP = False Positive

FN = False Negative

TN = True Negative

FNR = False Negative Rate

FPR = False Positive Rate

Master thesis Cyber Security Engineering - The Hague Graduate School 29

5 Experimental environment & fine-tuning

This chapter provides a brief description of the experimental environment and the fine-tuning

applied on the CNNs.

5.1 Experimental environment
We implemented the proposed approach in an experiment. The experiment was conducted in

an isolated lab environment with the dataset made available by VT. The specifications of the

hardware and software used and the configuration of the lab environment were recorded, and

the datasets were saved so that the experiment could be repeated with the same parameters

and the results could be peer-reviewed; this contributes to the validity and reproducibility of

the research. The specifications of the computer system used are described in Appendix 3:

System specifications. The pre-trained weights, on the ImageNet dataset, were downloaded

during the initialisation of the model. The scripts and Jupyter notebooks used to analyse the

data are available on GitHub https://github.com/azeus404/thesis .

5.2 Fine-tuning
Fine-tuning the model is the process of modifying the classification part of the selected CCNs

for our use case. Figure 11 shows an overview of a typical CNN divided into input, feature

extractor and classifier parts.

Figure 11 Example CNN feature extractor and classifier (Google,2020).

As discussed in Chapter 3 and illustrated in Figure 5, we modified the model

hyperparameters by tweaking the classification part (Figure 11) of the model and adding a

GlobalAveragePooling2D pooling layer for reducing the output (dimensions) from the pre-

trained CNN.

For the classifier part of Figure 11, we

• added a fully connected or dense layer with 1,024 neurons with a ReLu activation

function additional feature extraction. This neuron size is the output size of the

pooling layer of the feature extraction part of our model.

• added a fully connected or dense output layer of 8 neurons with a Softmax activation

function for the prediction of the classes.

A CNN has hyperparameters such as an optimisation algorithm and a loss function. We

applied an Adam optimisation function with a relatively high learning rate and a categorical

cross entropy loss function which computes the cross-entropy loss between the labels and

predictions, suited for a multi-class problem.

https://github.com/azeus404/thesis

Master thesis Cyber Security Engineering - The Hague Graduate School 30

6 Results of the study and analyses

6.1 Introduction
In this chapter we present the results of our study, beginning with a description of the

experimental results and proceeding to an interpretation of the results.

6.2 Experimental results
The results of the experiment are described, and the detector is evaluated by looking at its

performance using a set of evaluation metrics consisting of a confusion matrix (CM) and

derivatives such as recall, precision and accuracy, as presented in Chapter 4.

The extent to which the detector is able to correctly classify samples based on these

evaluation methods is described and compared with the techniques that have been applied in

the existing literature (Chen, 2018; Vu et al., 2019).

We compared different CNN architectures as described in the research methodology and

approach models presented in Table 4. In the table, the total parameters, the number of

trainable parameters and the input shape or tensor are shown for a given model.

During the experiment the models were trained for 50 epochs, a batch size of 64 samples per

epoch and a high learning rate of 1 ∗ 10−3 (1e-3), the default value of the Adam optimizer,

for stochastic gradient descent; this algorithm is used for back propagation (Kingma and Ba,

2017). Batch size and learning rate are hyperparameters (Géron, 2019) and can be further

tuned during the final implementation of the detector. In the literature, 32 is used as a default

batch size, but the decision depends mainly on the amount of available GPU RAM and the

size of the training dataset (Géron, 2019; Masters and Luschi, 2018). We decided to use 64

because (1) we had sufficient GPU RAM available and (2) it gave the best results for our use

case as it reduced the training time and led to a better-fitting model.

We applied an early stopping call-back function – if the validation accuracy did not improve

for 5 epochs the training halted and the best model weights were saved – and an additional

function to stop the training if a NaN value of loss was reached.

Table 4 Implemented models and parameters

Model Total params Number of

Trainable

params

Input shape

(ImageNet)

1 ResNet50 25,694,088 25,640,968 224 x 224 x 3

2 InceptionV3 23,909,160 2,106,376 299 x 299 x 3

3 ResNet50V2 25,671,176 2,106,376 224 x 224 x 3

4 ResNet101V2 44,732,936 2,106,376 224 x 224 x 3

5 ResNet152V2 60,438,024 2,106,376 224 x 224 x 3

6 VGG19 20,557,896 533,512 224 x 224 x 3

7 Xception 22,967,856 2,106,376 299 x 299 x 3

8 VGG16 14,981,448 266,760 224 x 224 x 3

9 DenseNet121 8,095,304 1,057,800 224 x 224 x 3

10 DenseNet169 14,356,040 1,713,160 224 x 224 x 4

11 MobileNet 4,286,664 1,057,800 224 x 224 x 3

Master thesis Cyber Security Engineering - The Hague Graduate School 31

12 MobileNetV2 3,577,928 1,649,928 224 x 224 x 3

131 NASNetMobile 5,326,716 1,124,648 224 x 224 x 3

14 NASNetLarge 89,184,122 4,267,304 331 x 331 x 3

15 InceptionResNetV2 55,873,736 1,582,088 299 x 299 x 3

16 EfficientNetB7 66,728,351 2,630,664 224 x 224 x 3

As shown in the input shape column, the input shapes are fixed because we used ImageNet

weights. After the experiment we collected the data; the models’ scores are shown, ranked by

accuracy, in Table 5.

Table 5 Model performance

Model F1 Recall Precision Loss Accuracy

MobileNetV2 0.8479 0.8482 0.8498 0.6495 0.916

MobileNet 0.8503 0.8603 0.8429 0.3466 0.9049

ResNet50 0.8034 0.8239 0.8009 0.4271 0.8748

NASNetLarge 0.8134 0.8204 0.8163 0.7944 0.8605

InceptionV3 0.782 0.7749 0.8018 0.8289 0.8479

InceptionResNetV2 0.7615 0.7855 0.7468 0.4958 0.8463

VGG16 0.5764 0.6709 0.5414 1,05E+32 0.6149

ResNet152V2 0.5147 0.5943 0.5372 41.622 0.5563

ResNet50V2 0.2457 0.2865 0.2911 85.631.211 0.3994

ResNet101V2 0.26 0.2874 0.2864 4363799.5 0.3217

Xception 0.0135 0.125 0.0071 NaN 0.0571

VGG19 0.0135 0.125 0.0071 NaN 0.0571

EfficientNetB7 0.0135 0.125 0.0071 NaN 0.0571

DenseNet121 0.0135 0.125 0.0071 NaN 0.0571

DenseNet169 0.0135 0.125 0.0071 NaN 0.0571

The models with the required accuracy of 90% plus established in Chapter 3, section 3.4 are

listed below in Table 6.

Table 6 Comparing model results on test dataset

Model F1 Recall Precision Loss Accuracy

MobileNetV2 0.8479 0.8482 0.8498 0.6495 0.916

MobileNet 0.8503 0.8603 0.8429 0.3466 0.9049

Due to the stochastic nature of training CNNs, it is possible to reach the same results on

either of the models. This is a common problem when training models in general and on

GPUs (Géron, 2018). The differences in performance are in our opinion too slight to justify

favouring one over the other.

1 Despite our efforts we failed to successfully implement this model.

Master thesis Cyber Security Engineering - The Hague Graduate School 32

In our study false positives are considered as important as false negatives for malware

analysts because being unable to identify a sample as ransomware or as belonging to a known

family does not help the malware analysts, as described in the aim of our study.

The MobileNet and MobileV2 models reach around 90% accuracy on the test data in 21

epochs on the validation data. The experimental results are shown in Table 6.

As shown Figure 12 the macro average recall of 0.86 and 0.85, macro average precision score

of 0.84 and 0.85 and similar F1 scores on 631 samples in the test set.

Figure 12 Classification reports (top MobileNet and bottom MobileNetV2)

The MobileNet and MobileNetV2 models score around 90% on the 631 stratified test samples

over the 8 classes, the benign samples and the ransomware families. The confusion matrices

of the aforementioned models are provided in Appendix 2: Confusion matrices

Master thesis Cyber Security Engineering - The Hague Graduate School 33

6.3 Interpretation and discussion
We began the experiment with the models with the deepest layers as suggested by the

literature review. The experimental results show that it is possible to use CNN and apply

transfer learning models trained on natural images from the ImageNet dataset on a new

domain such as ransomware.

We initially tried grayscale images but ended up using RGB because training on grayscale

images did not reach the desired 90% accuracy.2

The deeper models, 3, 4, 5 and 16, are the models with significantly more parameters, as

shown in Table 4. Surprisingly, they failed to fit the training data and had high losses or

resulted in NaN errors. We consider model 14 (NASNetLarge) to be an outlier; this was the

deepest network we evaluated, and it had a fair accuracy of 86%. This result counters the

insights found in the literature that deeper networks tend to have better accuracy; in our case,

the less deep networks 11 (MobileNet) and 12 (MobileNetV2) performed better than the

deeper ones on our dataset.

As shown in Figure 12, both MobileNet models score as required on the classification task.

As expected, Teslacrypt, as the majority class, was identified correctly most of the time and

Wannacrypt, as the minority, not at all, despite training the model with class weights to

counter imbalance. What is more, some classes were confused or misclassified by the

detector, but this could give malware analysts an indication of or clue to their origin.

Due to the stochastic nature of training CNNs, it would be possible to reach the same results

on either of the models if the experiment were to be repeated. The differences in performance

are, in our opinion, too minimal to justify favouring one model over the other.

2 The results of the experiment on grayscale images are also available on https://github.com/azeus404

https://github.com/azeus404/thesis

Master thesis Cyber Security Engineering - The Hague Graduate School 34

7 Conclusions and future research
7.1 Introduction
Our research adds to the body of knowledge on ransomware by adding a novel approach that

applies a form of AI – deep learning and transfer learning, as we call it – to a ransomware

classification problem referred to us as a use case. As we stated in the introduction to this

study, we aim to aid malware analysts in identification of new ransomware families after

detection.

7.2 Review of research questions
In this section we present the answers to our research questions, titled RQ 1 through 3, and

the main research question.

7.2.1 Review of the research questions

RQ 1

The current methods for detecting ransomware are based on dynamic and static analysis.

Static analysis relies on the heuristics, signatures and specialized domain knowledge of the

analyst, who focuses on the behaviour of the ransomware interacting with a simulated victim

system. In the literature review we found indications that image-based ransomware

classification is still relatively new in this field of study. There were no publicly available

research papers found on this subject. Current identification methods are aimed at the

malware problem as a type classification without focusing on individual subclasses like

ransomware families. State of the art ML or shallow learning approaches tend to need a

significant amount of feature engineering and domain knowledge but can, with a limited

number of features, be very effective in identifying malware and may be able to classify

ransomware into families. To eliminate the need for extensive feature engineering, we

transformed the ransomware classification problem into an image classification problem.

RQ 2

To resolve image classification problems, DNNs and especially CNNs have proven to be

very capable in the field of image recognition and computer vision. However, they need a

vast number of training samples. Deep learning and deep transfer learning involve the use of

neural networks and transfer learning based on training the DNN in general on a dataset and

using what is learned on another domain. However, although malware and ransomware are

related, there is no trained model available. Therefore, ransomware image classification

challenges have to rely on models trained on natural images. Deep learning, as opposed to

traditional shallow learning methods, seems to be a viable solution and aids us in reaching

our objectives.

RQ3 A and B

We successfully implemented a pre-trained CNN and changed the classifier part to our

ransomware classes. In the empirical part of our study, we evaluated the performance of the

model and reached satisfactory results. During the implementation of the classifier as part of

a detector, there is a need for further fine-tuning of the hyperparameters. Additional fine-

tuning can boost the accuracy by between 5% and 10% (Géron, 2018).

Master thesis Cyber Security Engineering - The Hague Graduate School 35

7.2.2 Review of the main research question

The DL models used in our research, MobileNet and MobileNetV2, were pretrained on an

ImageNet dataset, and transfer learning was applied with the weights, resulting in a 90%

accuracy on our ransomware dataset and proving that a CNN can be used for detecting and

identifying ransomware families based on images and that using DTL, and TTL in particular,

to aid the speed of training and accuracy is possible.

We discovered that grayscale images, used in multiple prior studies, did not prove to reach a

90% plus rate of accuracy on our dataset and in our use case, identifying and predicting

families of ransomware. However, the results of our study demonstrate that we can reach the

same or better results using 3-channel (RGB) images. This discovery adds a novel insight to

the body of knowledge in this field.

There is a limited number of ransomware samples available and a lot of single instances,

hence the need for application of deep transfer learning. We believe that our method is

capable of detecting unseen ransomware based on the trained features of our model and is

able to give at least a hint of possible family relations as stated in Chapter 6, section 3.

7.3 Future research
Image size is a key hyperparameter that needs to be taken into account during training and

validation of the model, since malware developers can manipulate samples with additional

random bytes, changing the file size after conversion of the image size. This results in a

sample that cannot be detected using this image-based detection approach. Therefore, future

research must be aimed at improving the robustness of the classifier in relation to variance in

image size.

Master thesis Cyber Security Engineering - The Hague Graduate School 36

8 Discussion and reflections
In this chapter we discuss and reflect on the literature, methodology and outcomes of the

research.

8.1 Literature
There was no literature available regarding image-based classification of ransomware

samples. However, the classification of ransomware can be regarded as a sub-task of the

classification of malware. We reviewed state-of-the-art articles in the field of machine

learning and deep learning in security and other fields of study like medicine and computer

vision in general. The literature and our review form a sturdy base for the empirical research

in this study.

8.2 Methodology
We could achieve better results if more data were available for training a model; however,

2.5% of the malware samples collected by VT were detected by Microsoft as ransomware.

Therefore, this may not be feasible.

When adversaries use smaller or larger binaries, which result in our method in larger images,

this has a negative effect on the detection rate, as noted by Chen (2018).

Therefore, as demonstrated by Chen (2018) and Gibert et al. (2020), image size is a

hyperparameter that needs to be fine-tuned, and there is a constant need to re-train this model.

We did not add other forms of malware to our dataset because the effects of ransomware are

clear. As a result, malware analysts know already whether a sample contains ransomware but

need to identify the family.

8.3 Outcome
We consider this study to be an addition the existing body of knowledge regarding malware

detection and identification in general. Analysts can be aided in their tedious work by our

approach, so this study has practical value. In addition, it can serve as an inspiration for

future research as stated in the Conclusions chapter of this study.

Master thesis Cyber Security Engineering - The Hague Graduate School 37

Glossary

AI Artificial Intelligence

ANN Artificial Neural Networks

API Application Programming Interface

AV Anti-virus

CM Confusion Matrix

CNN Convolutional Neural Network

COTS Commercial Of The Shelve

CPU Central Processing Unit

CV Computer Vision

DNN Deep Neural Network

FPR False Positive Rate

GPU Graphical Processing Unit

KNN k-Nearest Neighbours algorithm

ML Machine Learning

MLA Machine Learning Algorithms

NN Neural Networks

PCA Principal Component Analyses

RGB Red Green Blue

SIFT Scale Invariant Feature Transform

SMOTE Synthetic Minority Over-Sampling

Technique

SVM Support Vector Machine

TPR True Positive Rate

VT VirusTotal

Master thesis Cyber Security Engineering - The Hague Graduate School 38

References
Al-rimy, B.A.S., Maarof, M.A., Shaid, S.Z.M., 2018. Ransomware threat success factors,

taxonomy, and countermeasures: A survey and research directions. Comput. Secur.

74, 144–166. https://doi.org/10.1016/j.cose.2018.01.001

Amro, S.A., Alkhalifah, A., 2015. A Comparative Study of Virus Detection Techniques 9, 8.

Baltrušaitis, T., Ahuja, C., Morency, L.-P., 2018. Multimodal machine learning: A survey

and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443.

Bhodia, N., Prajapati, P., Di Troia, F., Stamp, M., 2019. Transfer Learning for Image-Based

Malware Classification. ArXiv190311551 Cs Stat.

Cawsey, A., 1998. The essence of artificial intelligence, Essence of computing series.

Prentice Hall, Harlow, England ; New York.

Chen, C.-M., Wang, S.-H., Wen, D.-W., Lai, G.-H., Sun, M.-K., 2019. Applying

Convolutional Neural Network for Malware Detection, in: 2019 IEEE 10th

International Conference on Awareness Science and Technology (ICAST). IEEE, pp.

1–5.

Chen, L., 2018. Deep Transfer Learning for Static Malware Classification. ArXiv181207606

Cs Stat.

Claufield, B., 2009. What’s the Difference Between a CPU and a GPU? NVIDIA. URL

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-

gpu/

Coull, S.E., Gardner, C., 2019. Activation Analysis of a Byte-Based Deep Neural Network

for Malware Classification. ArXiv190304717 Cs Stat.

Dargahi, T., Dehghantanha, A., Bahrami, P.N., Conti, M., Bianchi, G., Benedetto, L., 2019.

A Cyber-Kill-Chain based taxonomy of crypto-ransomware features. J. Comput.

Virol. Hacking Tech. 15, 277–305. https://doi.org/10.1007/s11416-019-00338-7

Deng, L., Yu, D., 2013. Deep Learning: Methods and Applications. Deep Learn. 7, 197.

Ganapathi, P., Shanmugapriya, D. (Eds.), 2020. Handbook of Research on Machine and Deep

Learning Applications for Cyber Security:, Advances in Information Security,

Privacy, and Ethics. IGI Global. https://doi.org/10.4018/978-1-5225-9611-0

Géron, A., 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:

concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc,

Sebastopol, CA.

Ghafur, S., Kristensen, S., Honeyford, K., Martin, G., Darzi, A., Aylin, P., 2019. A

retrospective impact analysis of the WannaCry cyberattack on the NHS. NPJ Digit.

Med. 2, 1–7.

Gibert, D., Mateu, C., Planes, J., 2020. The rise of machine learning for detection and

classification of malware: Research developments, trends and challenges. J. Netw.

Comput. Appl. 153, 102526. https://doi.org/10.1016/j.jnca.2019.102526

Guthrie, W.F., 2020. NIST/SEMATECH e-Handbook of Statistical Methods (NIST

Handbook 151). https://doi.org/10.18434/M32189

Han, K., Lim, J.H., Im, E.G., 2013. Malware analysis method using visualization of binary

files, in: Proceedings of the 2013 Research in Adaptive and Convergent Systems. pp.

317–321.

Hardy, W., Chen, L., Hou, S., Ye, Y., Li, X., 2016. DL4MD: A deep learning framework for

intelligent malware detection, in: Proceedings of the International Conference on Data

Mining (DMIN). The Steering Committee of The World Congress in Computer

Science, Computer …, p. 61.

Hassan, N.A., 2019. Ransomware Families, in: Ransomware Revealed. Springer, pp. 47–68.

Hosseini, M.-P., Lu, S., Kamaraj, K., Slowikowski, A., Venkatesh, H.C., 2020. Deep

Learning Architectures, in: Pedrycz, W., Chen, S.-M. (Eds.), Deep Learning:

Master thesis Cyber Security Engineering - The Hague Graduate School 39

Concepts and Architectures, Studies in Computational Intelligence. Springer

International Publishing, Cham, pp. 1–24. https://doi.org/10.1007/978-3-030-31756-

0_1

ImageNet Project, n.d. ImageNet [WWW Document]. URL http://www.image-net.org/

(accessed 3.20.20).

Johns, J., 2017. Representation Learning for Malware Classification 23.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N.D.B., Wang, Y., Iqbal, F., 2018. Malware

Classification with Deep Convolutional Neural Networks, in: 2018 9th IFIP

International Conference on New Technologies, Mobility and Security (NTMS).

Presented at the 2018 9th IFIP International Conference on New Technologies,

Mobility and Security (NTMS), IEEE, Paris, pp. 1–5.

https://doi.org/10.1109/NTMS.2018.8328749

Kaspersky, 2020. IT threat evolution Q3 2019. Statistics. URL https://securelist.com/it-

threat-evolution-q3-2019-statistics/95269/ (accessed 2.3.20).

Kaspersky, n.d. Machine Learning in Cybersecurity. URL

https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-

learning-in-cybersecurity (accessed 2.2.20).

keras, 2020. Keras [WWW Document]. URL https://keras.io

Khan, R.U., Zhang, X., Kumar, R., Tariq, H.A., 2017. Analysis of resnet model for malicious

code detection, in: 2017 14th International Computer Conference on Wavelet Active

Media Technology and Information Processing (ICCWAMTIP). Presented at the

2017 14th International Computer Conference on Wavelet Active Media Technology

and Information Processing (ICCWAMTIP), IEEE, Chengdu, pp. 239–242.

https://doi.org/10.1109/ICCWAMTIP.2017.8301487

Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. ArXiv14126980

Cs.

Kolosnjaji, B., Eraisha, G., Webster, G., Zarras, A., Eckert, C., 2017. Empowering

convolutional networks for malware classification and analysis, in: 2017 International

Joint Conference on Neural Networks (IJCNN). IEEE, pp. 3838–3845.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep

convolutional neural networks, in: Advances in Neural Information Processing

Systems. pp. 1097–1105.

Krohn, J., Beyleveld, G., Bassens, A., 2020. Deep learning illustrated: a visual, interactive

guide to artificial intelligence.

Kubat, M., 2017. An introduction to machine learning. Springer Science+Business Media,

New York, NY.

Lo, W.W., Yang, X., Wang, Y., 2019. An Xception Convolutional Neural Network for

Malware Classification with Transfer Learning, in: 2019 10th IFIP International

Conference on New Technologies, Mobility and Security (NTMS). Presented at the

2019 10th IFIP International Conference on New Technologies, Mobility and Security

(NTMS), IEEE, CANARY ISLANDS, Spain, pp. 1–5.

https://doi.org/10.1109/NTMS.2019.8763852

Loman, M., 2019. How Ransomware Attacks.

Masters, D., Luschi, C., 2018. Revisiting Small Batch Training for Deep Neural Networks.

ArXiv180407612 Cs Stat.

McAfee, 2019. McAfee Labs Threats Report August 2019.

MITRE, 2020. Data Encrypted for Impact [WWW Document]. URL

https://attack.mitre.org/techniques/T1486/

Müller, V.C., Bostrom, N., 2016. Future progress in artificial intelligence: A survey of expert

opinion, in: Fundamental Issues of Artificial Intelligence. Springer, pp. 555–572.

Master thesis Cyber Security Engineering - The Hague Graduate School 40

Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B., 2011. Malware images: visualization

and automatic classification, in: Proceedings of the 8th International Symposium on

Visualization for Cyber Security. pp. 1–7.

NCSC, 2020. Ransomware: wat kunt u doen? [WWW Document]. URL

https://www.ncsc.nl/actueel/nieuws/2019/september/5/ransomware-wat-kunt-u-doen

(accessed 2.2.20).

Pan, S.J., Yang, Q., 2010. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 22,

1345–1359. https://doi.org/10.1109/TKDE.2009.191

Rawat, W., Wang, Z., 2017. Deep convolutional neural networks for image classification: A

comprehensive review. Neural Comput. 29, 2352–2449.

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M., 2018. Microsoft Malware

Classification Challenge. ArXiv180210135 Cs.

Sewak, M., Sahay, S.K., Rathore, H., 2018. Comparison of deep learning and the classical

machine learning algorithm for the malware detection, in: 2018 19th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD). IEEE, pp. 293–296.

Sharma, S., Rama Krishna, C., Sahay, S.K., 2019. Detection of Advanced Malware by

Machine Learning Techniques, in: Ray, K., Sharma, T.K., Rawat, S., Saini, R.K.,

Bandyopadhyay, A. (Eds.), Soft Computing: Theories and Applications, Advances in

Intelligent Systems and Computing. Springer Singapore, Singapore, pp. 333–342.

https://doi.org/10.1007/978-981-13-0589-4_31

Sikorski, M., Honig, A., 2012. Practical malware analysis: the hands-on guide to dissecting

malicious software. No Starch Press, San Francisco.

Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale

Image Recognition. ArXiv14091556 Cs.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A Survey on Deep Transfer

Learning. ArXiv180801974 Cs Stat.

Trend Micro, 2020. THE SPRAWLING REACH OF COMPLEX THREATS 2019

ANNUAL SECURITY ROUNDUP [WWW Document]. URL

https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-

reports/roundup/the-sprawling-reach-of-complex-threats (accessed 2.2.20).

Vinayakumar, R., Alazab, M., Soman, K., Poornachandran, P., Venkatraman, S., 2019.

Robust intelligent malware detection using deep learning. IEEE Access 7, 46717–

46738.

Vu, D.-L., Nguyen, T.-K., Nguyen, T.V., Nguyen, T.N., Massacci, F., Phung, P.H., 2019. A

convolutional transformation network for malware classification. ArXiv Prepr.

ArXiv190907227.

Wieringa, R.J., 2014. Design Science Methodology for Information Systems and Software

Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-43839-8

Xie, B., Qin, J., Xiang, X., Li, H., Pan, L., 2017. An Image Retrieval Algorithm Based on

GIST and SIFT Features 8.

Yue, S., 2017. Imbalanced malware images classification: a CNN based approach. ArXiv

Prepr. ArXiv170808042.

Master thesis Cyber Security Engineering - The Hague Graduate School 41

Appendix 1: Dataset

VirusTotal provided us with a dataset which contained 347,307 Microsoft Windows binaries

and JSON files. As described in Chapter 4 paragraph 4.1, we selected samples based on the

label as provided by Microsoft and we used it as ground truth during training and testing of

our models. In other words, the label is the name of the ransomware family as it was given

by a Microsoft antivirus scanner.

An example of a binary and its corresponding JSON file is listed below:

- 0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768

- 0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768.json

The JSON file contains the results of the analysis done by 70 antivirus scanners from

different AV companies on the binary and includes the relevant meta data of the file.

A formatted output of the JSON file can be found on

https://www.virustotal.com/gui/file/0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd

53f6a37dc6aa6768/detection

The sample was detected as malicious and identified by Microsoft as a sample from the

Cerber ransomware family. With the name (label): Ransom:Win32/Cerber.J.

https://www.virustotal.com/gui/file/0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768/detection
https://www.virustotal.com/gui/file/0ad4fd25a9611201d3125cdf129bb3ca3738cc49bf3e3bfd53f6a37dc6aa6768/detection

Master thesis Cyber Security Engineering - The Hague Graduate School 42

Appendix 2: Confusion matrices

As shown in the images below the Confusion Matrices of the MobileNetV1 and V2 models.

Master thesis Cyber Security Engineering - The Hague Graduate School 43

Master thesis Cyber Security Engineering - The Hague Graduate School 44

Appendix 3: System specifications & repository

For the experiment, a system with the following specifications was used:

• Intel Core i7 8559U Processor (2.7 GHz)

• 32GB RAM

• GeForce RTX 2070 8GB

This system used a GPU with 2,304 CUDA cores and 8GB of memory in training the DL

algorithm.

The Ubuntu 18.0.5 LTS Linux OS was used. Linux is suitable for our needs because (1)

malware is used, and we do not want to infect the underlying operating system while

processing the samples, and (2) the tools used are optimised for this operating system.

The software libraries used and their versions are included the requirements.txt file accessible

in a public GitHub repository: https://github.com/azeus404/thesis

The different scripts used in this study are divided into categories as described in the

approach (Chapter 3) and shown in the image below. Please consult the README.MD file in

the aforementioned repository.

The scripts used for the pre-processing and the model evaluation analysis are also available

as Jupyter Notebooks and were used in Chapter 4 of the study. Finally, a prototype of the

implemented model, in a detector is included in the aforementioned GitHub repository as

described in Chapter 4.

https://github.com/azeus404/thesis

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Background of the study
	1.2 Problem field analysis
	1.3 Research aim and objectives
	1.4 Central research questions and associated questions
	1.5 Limitations of the study
	1.6 Structure of thesis

	2 Literature review
	2.1 Ransomware detection & identification
	2.1.1 Similarity between families
	2.1.2 Machine Learning
	2.1.3 Summary

	2.2 AI and Deep Learning
	2.2.1 Deep Learning
	2.2.2 Summary

	2.3 Convolutional Neural Networks
	2.3.1 Architecture
	2.3.2 Resource intensive
	2.3.3 Summary

	2.4 Deep Transfer Learning
	2.4.1 Transductive Transfer Learning
	2.4.2 Pre-trained CNN’s
	2.4.3 Models applied in other studies
	2.4.4 Transfer scenarios
	2.4.5 Summary

	3 Proposed approach
	3.1 Pre-processing
	3.2 Transfer learning
	3.3 Evaluation
	3.4 Requirements

	4 Research methodology
	4.1 Design science research
	4.2 Literature review
	4.3 Experiment
	4.3.1 Detector & classifier
	4.3.2 Constraints

	4.4 Data gathering methods
	4.4.1 Malware dataset
	4.4.2 Benign dataset

	4.5 Selection of samples
	4.6 Image distortion
	4.7 Imbalanced distribution of samples
	4.8 Training, validation and testing set
	4.9 Model selection
	4.10 Model Evaluation

	5 Experimental environment & fine-tuning
	5.1 Experimental environment
	5.2 Fine-tuning

	6 Results of the study and analyses
	6.1 Introduction
	6.2 Experimental results
	6.3 Interpretation and discussion

	7 Conclusions and future research
	7.1 Introduction
	7.2 Review of research questions
	7.2.1 Review of the research questions
	7.2.2 Review of the main research question

	7.3 Future research

	8 Discussion and reflections
	8.1 Literature
	8.2 Methodology
	8.3 Outcome

	Glossary
	References
	Appendix 1: Dataset
	Appendix 2: Confusion matrices
	Appendix 3: System specifications & repository

